Polymorphisms, diet and nutrigenomics
pdf

Keywords

Nutrigenomics
Nutrigenetics
Metabolomics
Precision nutrition
Physical activity

Abstract

Every human being possesses an exclusive nutritional blueprint inside their genes. Bioactive food components and nutrients affect the expression of such genes. Nutrigenomics is the  science that analyzes gene-nutrient interactions (nutrigenetics), which can lead to the development of personalized nutritional recommendations to maintain optimal health and prevent disease. Genomic diversity among various ethnic groups might affect nutrients bioavailability as well as their metabolism. Nutrigenomics combines different branches of science including nutrition, bioinformatics, genomics, molecular biology, molecular medicine, and epidemiology. Genes regulate intake and metabolism of different nutrients, while nutrients positively or negatively influence the expression of a number of genes; testing of specific genetic polymorphisms may therefore become a useful tool to manage weight loss and to fully understand gene-nutrient interactions. Indeed, several approaches are used to study gene-nutrient interactions: epigenetics, the study of genome modification not related to changes in nucleotide sequence; transcriptomics, the study of tissue-specific and time-specific RNA transcripts; proteomics, the study of proteins involved in biological processes; and metabolomics, the study of changes of primary and secondary metabolites in body fluids and tissues. Hence, the use of nutrigenomics to improve and optimize a healthy, balanced diet in clinical settings could be an effective approach for long-term lifestyle changes that might lead to consistent weight loss and improve quality of life.

https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2754
pdf

References

[1] Sales NMR, Pelegrini PB, Goersch M. Nutrigenomics: definitions and advances of this new science. J Nutr Metab 2014. https://doi.org/10.1155/2014/202759
[2] Naureen Z, Miggiano GAD, Aquilanti B, Velluti V, Matera G, Gagliardi L, Zulian A, Romanelli R, Bertelli M. Genetic test for the prescription of diets in support of physical activity. Acta Biomed 2020;91. https://doi.org/10.23750/abm.v91i13-S.10584
[3] Cozzolino S. Cominetti C. Biochemical and physiological bases of nutrition in different stages of life in health and disease. Monole, Sao Paulo, Brazil, 2013. Available from https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Biochemical+and+physiological+bases+of+nutrition+in+different+stages+of+life+in+health+and+disease.+&btnG=. Accessed on 01/07/2022.
[4] Dauncey M. Recent advances in nutrition, genes and brain health. Proc Nutr Soc 2012;71:581-91. https://doi.org/10.1017/S0029665112000237
[5] Fialho E, Moreno F, Ong T. Nutrition in the post-genomics: fundamentals and applications of omics tools. Rev Nutr 2008;21:757-66.
[6] Ramos-Lopez O, Milagro FI, Allayee H, Chmurzynska A, Choi MS, Curi R, De Caterina R, Ferguson LR, Goni L, Kang JX. Guide for current nutrigenetic, nutrigenomic, and nutriepigenetic approaches for precision nutrition involving the prevention and management of chronic diseases associated with obesity. J Nutrigenet Nutrigenomics 2017;10:43-62. https://doi.org/10.1159/000477729
[7] Fenech MF. Nutriomes and nutrient arrays-the key to personalised nutrition for DNA damage prevention and cancer growth control. Genome Integr 2010;1:1-9. https://doi.org/10.1186/2041-9414-1-11
[8] Kaput J. Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol 2008;19:110-20. https://doi.org/10.1016/j.copbio.2008.02.005
[9] Jirtle RL and Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007;8:253-62. https://doi.org/10.1038/nrg2045
[10] Celis-Morales C, Marsaux CF, Livingstone KM, Navas-Carretero S, San-Cristobal R, Fallaize R, Macready AL, O’Donovan C, Woolhead C, Forster H. Can genetic-based advice help you lose weight? Findings from the Food4Me European randomized controlled trial. Am J Clin Nutr 2017;105:1204-13. https://doi.org/10.3945/ajcn.116.145680
[11] Jeon J-P, Shim S-M, Nam H-Y, Ryu G-M, Hong E-J, Kim H-L, Han B-G. Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus. BMC Genomics 2010;11:1-10. https://doi.org/10.1186/1471-2164-11-426
[12] Bonnefond A, Yengo L, Dechaume A, Canouil M, Castelain M, Roger E, Allegaert F, Caiazzo R, Raverdy V, Pigeyre M. Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach. BMC Med 2017;15:1-10. https://doi.org/10.1186/s12916-017-0784-x
[13] Hameed I, Masoodi SR, Afroze D, Bhat RA, Naykoo NA, Mir SA, Mubarik I, Ganai BA. CTTTA Deletion/Insertion polymorphism in 3'-UTR of LEPR gene in type 2 diabetes subjects belonging to Kashmiri population. J Diabetes Metab Disord 2014;13:1-6. https://doi.org/10.1186/s40200-014-0124-z
[14] Duthie SJ. Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 2011;70:47-56. https://doi.org/10.1017/S0029665110003952
[15] Boqué N, de la Iglesia R, de la Garza AL, Milagro FI, Olivares M, Bañuelos Ó, Soria AC, Rodríguez-Sánchez S, Martínez JA, Campión J. Prevention of diet-induced obesity by apple polyphenols in W istar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res 2013;57:1473-8. https://doi.org/10.1002/mnfr.201200686
[16] Tryndyak VP, Marrone AK, Latendresse JR, Muskhelishvili L, Beland FA, Pogribny IP. MicroRNA changes, activation of progenitor cells and severity of liver injury in mice induced by choline and folate deficiency. J Nutr Biochem 2016;28:83-90. https://doi.org/10.1016/j.jnutbio.2015.10.001
[17] Choi S-W and Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr 2010;1:8-16. https://doi.org/10.3945/an.110.1004
[18] Nicoletti CF, Nonino CB, de Oliveira BAP, de Souza Pinhel MA, Mansego ML, Milagro FI, Zulet MA, Martinez JA. DNA methylation and hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg 2016;26:603-11. https://doi.org/10.1007/s11695-015-1802-8
[19] Gracia A, Elcoroaristizabal X, Fernández-Quintela A, Miranda J, Bediaga NG, de Pancorbo MM, Rimando AM, Portillo MP. Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds. Genes Nutr 2014;9:411. https://doi.org/10.1007/s12263-014-0411-9
[20] Peng W, Huang R, Xiong Y-L, Chao W. Protective effects of curcumin against liver fibrosis through modulating DNA methylation. Chin J Nat Med 2016;14:255-64. https://doi.org/10.1016/ S1875-5364(16)30025-5
[21] Liu B and Qian S-B. Translational regulation in nutrigenomics. Adv Nutr. 2011;2:511-9. https://doi.org/10.3945/an.111.001057
[22] Daimiel L, Vargas T, Ramirez de Molina A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis 2012;33:2266-89. https://doi.org/10.1002/elps.201200084
[23] Costa N and Rosa C. Functional foods: bioactive components and physiological effects. 1 Reprint. Rúbio, Rio de Janeiro, 2011. Available from https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Costa+N+and+Rosa+C.+Functional+foods%3A+bioactive+components+and+physiological+effects.+&btnG=. Accessed on 01/07/2022.
[24] Ronteltap A, Van Trijp J, Renes R. Consumer acceptance of nutrigenomics-based personalised nutrition. Br J Nutr 2008;101:132-44. https://doi.org/10.1017/S0007114508992552
[25] Tebani A and Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019;6:41. https://doi.org/10.3389/fnut.2019.00041
[26] Norheim F, Gjelstad IM, Hjorth M, Vinknes KJ, Langleite TM, Holen T, Jensen J, Dalen KT, Karlsen AS, Kielland A. Molecular nutrition research—the modern way of performing nutritional science. Nutrients 2012;4:1898-44. https://doi.org/10.3390/nu4121898
[27] Ong T and Rogero M. Nutrigenomics: importance of nutrientgene interaction for health promotion. Available from https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=ng+T+an d+Rogero+M.+Nutrigenomics%3A+importance+of+nutrient-ge ne+interaction+for+health+promotion.+Journal+of+the+ABES O%2C+2009%3B40.&btnG=. Accessed on 01/07/2022.
[28] Wittenbecher C, Muhlenbruch K, Kroger J, Jacobs S, Kuxhaus O, Floegel A, Fritsche A, Pischon T, Prehn C, Adamski J, Joost HG, Boeing H, Schulze MB. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 2015;101:1241-50. https://doi.org/10.3945/ajcn.114.099150
[29] Toro-Martín D, Arsenault BJ, Després J-P, Vohl M-C. Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients 2017;9:913. https://doi.org/10.3945/ajcn.114.099150
[30] Wang DD and Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 2018;6:416-26. https://doi.org/10.1016/S2213-8587(18)30037-8
[31] Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico. Nutrients 2016;8:101. https://doi.org/10.3390/nu8020101
[32] Lopez-Ramos O, Panduro A, Martinez-Lopez E. Genetic variant in the CD36 gene (rs1761667) is associated with higher fat intake and high serum cholesterol among the population of West Mexico. J Nutr Food Sci 2005;5:1-5. https://doi.org/10.4172/2155-9600.1000353
[33] Jiang-Hua Q, De-Chuang J, Zhen-Duo L, Shu-de C, Zhenzhen L. Association of methylenetetrahydrofolate reductase and methionine synthase polymorphisms with breast cancer risk and interaction with folate, vitamin B 6, and vitamin B 12 intakes. Tumour Biol 2014;35:11895-901. https://doi.org/10.1007/ s13277-014-2456-1
[34] Barry EL, Rees JR, Peacock JL, Mott LA, Amos CI, Bostick RM, Figueiredo JC, Ahnen DJ, Bresalier RS, Burke CA. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J Clin Endocrinol Metab 2014;99:E2133-7. https://doi.org/10.1210/jc.2014-1389
[35] Arkadianos I, Valdes AM, Marinos E, Florou A, Gill RD, Grimaldi KA. Improved weight management using genetic information to personalize a calorie controlled diet. Nutr J. 2007;6:1-8. https://doi.org/10.1186/1475-2891-6-29
[36] Pellatt AJ, Slattery ML, Mullany LE, Wolff RK, Pellatt DF. Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease. Pharmacogenet Genomics. 2016;26:294. https://doi.org/10.1097/ FPC.0000000000000217
[37] Tryndyak V, de Conti A, Kobets T, Kutanzi K, Koturbash I, Han T, Fuscoe JC, Latendresse JR, Melnyk S, Shymonyak S. Interstrain differences in the severity of liver injury induced by a choline-and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J 2012;26:4592-602. https://doi.org/10.1096/fj.12-209569
[38] Yubero-Serrano EM, Gonzalez-Guardia L, Rangel-Zuñiga O, Delgado-Casado N, Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Caballero J, Marin C, Gutierrez-Mariscal FM. Postprandial antioxidant gene expression is modified by Mediterranean diet supplemented with coenzyme Q 10 in elderly men and women. Age 2013;35:159-70. https://doi.org/10.1007/ s11357-011-9331-4
[39] Dziedzic B, Szemraj J, Bartkowiak J, Walczewska A. Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats. J Neuroendocrinol 2007;19:364-73. https://doi.org/10.1111/j.1365-2826.2007.01541.x
[40] Cao F, Liu T, Xu Y, Xu D, Feng S. Curcumin inhibits cell proliferation and promotes apoptosis in human osteoclastoma cell through MMP-9, NF-κB and JNK signaling pathways. Int J Clin Exp Pathol 2015;8:6037.
[41] Drabsch T and Holzapfel C. A scientific perspective of personalised gene-based dietary recommendations for weight management. Nutrients 2019;11:617. https://doi.org/10.3390/ nu11030617
[42] Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, Brennan L, Celis-Morales C, Cirillo E, Daniel H. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr 2017;12:1-12. https://doi.org/10.1186/s12263-017-0584-0
[43] Rao AD, Sun B, Saxena A, Hopkins PN, Jeunemaitre X, Brown NJ, Adler GK, Williams JS. Polymorphisms in the serum and glucocorticoid-inducible kinase 1 gene are associated with blood pressure and renin response to dietary salt intake. J Hum Hypertens 2013;27:176-80. https://doi.org/10.1038/jhh.2012.22
[44] Ferguson LR. Nutrigenomics approaches to functional foods. J Am Diet Assoc 2009;109:452-8. https://doi.org/10.1016/j.jada.2008.11.024
[45] Trujillo E, Davis C, Milner J. Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 2006;106:403-13. https://doi.org/10.1016/j.jada.2005.12.002
[46] Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, De Luis DA, Gil Á. Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: part 1-fields of precision nutrition. J Nutrigenet Nutrigenomics 2016;9:12-27. https://doi.org/10.1159/000445350
[47] Razquin C, Marti A, Martinez JA. Evidences on three relevant obesogenes: MC4R, FTO and PPARγ. Approaches for personalized nutrition. Mol Nutr Food Res 2011;55:136-49. https://doi.org/10.1002/mnfr.201000445
[48] Huang D, Xie X, Ma Y-t, Huang Y, Ma X. Endothelial lipase-384A/C polymorphism is associated with acute coronary syndrome and lipid status in elderly Uygur patients in Xinjiang. Genet Test Mol Biomarkers 2014;18:781-4. https://doi.org/10.1089/gtmb.2014.0195
[49] Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 2011;14:28. https://doi.org/10.1097/ MCO.0b013e32834121b1
[50] Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006;295:1135-41. https://doi.org/10.1001/jama.295.10.1135
[51] Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, Lai C-Q, Parnell LD, Coltell O, Lee Y-C. APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. Arch Intern Med 2009;169:1897906. https://doi.org/10.1001/archinternmed.2009.343
[52] Slater NA, Rager ML, Havrda DE, Harralson AF. Genetic variation in CYP2R1 and GC genes associated with vitamin D deficiency status. J Pharm Pract 2017;30:31-6. https://doi.org/10.1177/0897190015585876
[53] Merino J, Dashti HS, Li SX, Sarnowski C, Justice AE, Graff M, Papoutsakis C, Smith CE, Dedoussis GV, Lemaitre RN. Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Mol Psychiatry 2019;24:1920-32. https://doi.org/10.1038/s41380-018-0079-4
[54] Camilleri G, Kiani AK, Herbst KL, Kaftalli J, Bernini A, Dhuli K, Manara E, Bonetti G, Stuppia L, Paolacci S, Dautaj A, Bertelli M. Genetics of fat deposition. Eur Rev Med Pharmacol Sci 2021;25:14-22. https://doi.org/10.26355/eurrev_202112_27329
[55] Vettori A, Pompucci G, Paolini B, Del Ciondolo I, Bressan S, Dundar M, Kenanoglu S, Unfer V, Bertelli M, Geneob P. Genetic background, nutrition and obesity: a review. Eur Rev Med Pharmacol Sci 2019;23:1751-61. https://doi.org/10.26355/eurrev_201902_17137
[56] Precone V, Beccari T, Stuppia L, Baglivo M, Paolacci S, Manara E, Miggiano G, Falsini B, Trifirò A, Zanlari A. Taste, olfactory and texture related genes and food choices: Implications on health status. Eur Rev Med Pharmacol Sci 2019;23:1305-21. https://doi.org/10.26355/eurrev_201902_17026
[57] De Caterina R, El-Sohemy A. Moving towards specific nutrigenetic recommendation algorithms: caffeine, genetic variation and cardiovascular risk. J Nutrigenet Nutrigenomics 2016;9:106-15. https://doi.org/10.1159/000446801
[58] Levy E, Ménard D, Delvin E, Stan S, Mitchell G, Lambert M, Ziv E, Feoli-Fonseca JC, Seidman E. The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem 2001;276:39679-84. https://doi.org/10.1074/jbc.M105713200
[59] Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998;20:284-7. https://doi.org/10.1038/3099
[60] Loos RJ. The genetics of adiposity. Curr Opin Genet Dev 2018;50:86-95. https://doi.org/10.1016/j.gde.2018.02.009
[61] Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889-94. https://doi.org/10.1126/science.1141634
[62] Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015;373:895-907. https://doi.org/10.1056/NEJMoa1502214
[63] De Geus E and De Moor MH. Genetic and molecular aspects of sport performance. 1st ed. Oxford: Joun Wiley & Sons 2011.
[64] Wang J, Wang LJ, Zhong Y, Gu P, Shao JQ, Jiang SS, Gong JB. CETP gene polymorphisms and risk of coronary atherosclerosis in a Chinese population. Lipids Health Dis 2013;12:1-5. https://doi.org/10.1186/1476-511X-12-176
[65] Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hypponen E, Cauchi S, He M, Kutalik Z, Kumari M, Stancakova A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC, Zimmermann E, Rivera NV, Tanaka T, Stringham HM, Silbernagel G, Kanoni S, Feitosa MF, Snitker S, Ruiz JR, Metter J, Larrad MT, Atalay M, Hakanen M, Amin N, Cavalcanti-Proenca C, Grontved A, Hallmans G, Jansson JO, Kuusisto J, Kahonen M, Lutsey PL, Nolan JJ, Palla L, Pedersen O, Perusse L, Renstrom F, Scott RA, Shungin D, Sovio U, Tammelin TH, Ronnemaa T, Lakka TA, Uusitupa M, Rios MS, Ferrucci L, Bouchard C, Meirhaeghe A, Fu M, Walker M, Borecki IB, Dedoussis GV, Fritsche A, Ohlsson C, Boehnke M, Bandinelli S, van Duijn CM, Ebrahim S, Lawlor DA, Gudnason V, Harris TB, Sorensen TI, Mohlke KL, Hofman A, Uitterlinden AG, Tuomilehto J, Lehtimaki T, Raitakari O, Isomaa B, Njolstad PR, Florez JC, Liu S, Ness A, Spector TD, Tai ES, Froguel P, Boeing H, Laakso M, Marmot M, Bergmann S, Power C, Khaw KT, Chasman D, Ridker P, Hansen T, Monda KL, Illig T, Jarvelin MR, Wareham NJ, Hu FB, Groop LC, Orho-Melander M, Ekelund U, Franks PW and Loos RJ. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 2011;8:e1001116. https://doi.org/10.1371/journal. pmed.1001116
[66] Winnicki M, Accurso V, Hoffmann M, Pawlowski R, Dorigatti F, Santonastaso M, Longo D, Krupa-Wojciechowska B, Jeunemaitre X, Pessina AC. Physical activity and angiotensin-converting enzyme gene polymorphism in mild hypertensives. Am J Med Genet A 2004;125:38-44. https://doi.org/10.1002/ajmg.a.20434
[67] Rankinen T, Rice T, Teran-Garcia M, Rao DC, Bouchard C. FTO Genotype Is Associated With Exercise Training–induced Changes in Body Composition. Obesity 2010;18:322-6. https://doi.org/10.1038/oby.2009.205
[68] Cassidy S, Chau JY, Catt M, Bauman A, Trenell MI. Cross-sectional study of diet, physical activity, television viewing and sleep duration in 233 110 adults from the UK Biobank; the behavioural phenotype of cardiovascular disease and type 2 diabetes. BMJ Open 2016;6:e010038. https://doi.org/10.1136/ bmjopen-2015-010038
[69] Li S, Zhao JH, Luan Ja, Ekelund U, Luben RN, Khaw K-T, Wareham NJ, Loos RJ. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med 2010;7:e1000332. https://doi.org/10.1371/journal.pmed.1000332
[70] Dauncey M. Recent advances in nutrition, genes and brain health. Proc Nutr Soc 2012;71:581-91. https://doi.org/10.1017/S0029665112000237
[71] Fialho E, Moreno F, Ong T. Nutrition in the post-genomics: fundamentals and applications of omics tools. Rev Nutr 2008;21:757-66.
[72] Ramos-Lopez O, Milagro FI, Allayee H, Chmurzynska A, Choi MS, Curi R, De Caterina R, Ferguson LR, Goni L, Kang JX. Guide for current nutrigenetic, nutrigenomic, and nutriepigenetic approaches for precision nutrition involving the prevention and management of chronic diseases associated with obesity. J Nutrigenet Nutrigenomics 2017;10:43-62. https://doi.org/10.1159/000477729
[73] Fenech MF. Nutriomes and nutrient arrays-the key to personalised nutrition for DNA damage prevention and cancer growth control. Genome Integr 2010;1:1-9. https://doi.org/10.1186/2041-9414-1-11
[74] Kaput J. Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol 2008;19:110-20. https://doi.org/10.1016/j.copbio.2008.02.005
[75] Jirtle RL and Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet 2007;8:253-62. https://doi.org/10.1038/nrg2045
[76] Celis-Morales C, Marsaux CF, Livingstone KM, Navas-Carretero S, San-Cristobal R, Fallaize R, Macready AL, O’Donovan C, Woolhead C, Forster H. Can genetic-based advice help you lose weight? Findings from the Food4Me European randomized controlled trial. Am J Clin Nutr 2017;105:1204-13. https://doi.org/10.3945/ajcn.116.145680
[77] Jeon J-P, Shim S-M, Nam H-Y, Ryu G-M, Hong E-J, Kim H-L, Han B-G. Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus. BMC Genomics 2010;11:1-10. https://doi.org/10.1186/1471-2164-11-426
[78] Bonnefond A, Yengo L, Dechaume A, Canouil M, Castelain M, Roger E, Allegaert F, Caiazzo R, Raverdy V, Pigeyre M. Relationship between salivary/pancreatic amylase and body mass index: a systems biology approach. BMC Med 2017;15:1-10. https://doi.org/10.1186/s12916-017-0784-x
[79] Hameed I, Masoodi SR, Afroze D, Bhat RA, Naykoo NA, Mir SA, Mubarik I, Ganai BA. CTTTA Deletion/Insertion polymorphism in 3’-UTR of LEPR gene in type 2 diabetes subjects belonging to Kashmiri population. J Diabetes Metab Disord 2014;13:1-6. https://doi.org/10.1186/s40200-014-0124-z
[80] Duthie SJ. Epigenetic modifications and human pathologies: cancer and CVD. Proc Nutr Soc 2011;70:47-56. https://doi.org/10.1017/S0029665110003952
[81] Boqué N, de la Iglesia R, de la Garza AL, Milagro FI, Olivares M, Bañuelos Ó, Soria AC, Rodríguez‐Sánchez S, Martínez JA, Campión J. Prevention of diet‐induced obesity by apple polyphenols in W istar rats through regulation of adipocyte gene expression and DNA methylation patterns. Mol Nutr Food Res 2013;57:1473-8. https://doi.org/10.1002/mnfr.201200686
[82] Tryndyak VP, Marrone AK, Latendresse JR, Muskhelishvili L, Beland FA, Pogribny IP. MicroRNA changes, activation of progenitor cells and severity of liver injury in mice induced by choline and folate deficiency. J Nutr Biochem 2016;28:83-90. https://doi.org/10.1016/j.jnutbio.2015.10.001
[83] Choi S-W, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr 2010;1:8-16. https://doi.org/10.3945/an.110.1004
[84] Nicoletti CF, Nonino CB, de Oliveira BAP, de Souza Pinhel MA, Mansego ML, Milagro FI, Zulet MA, Martinez JA. DNA methylation and hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes Surg 2016;26:603-11. https://doi.org/10.1007/s11695-015-1802-8
[85] Gracia A, Elcoroaristizabal X, Fernández-Quintela A, Miranda J, Bediaga NG, de Pancorbo MM, Rimando AM, Portillo MP. Fatty acid synthase methylation levels in adipose tissue: effects of an obesogenic diet and phenol compounds. Genes Nutr 2014;9:411. https://doi.org/10.1007/s12263-014-0411-9
[86] Peng W, Huang R, Xiong Y-L, Chao W. Protective effects of curcumin against liver fibrosis through modulating DNA methylation. Chin J Nat Med 2016;14:255-64. https://doi.org/10.1016/ S1875-5364(16)30025-5
[87] Liu B, Qian S-B. Translational regulation in nutrigenomics. Adv Nutr 2011;2:511-9. https://doi.org/10.3945/an.111.001057
[88] Daimiel L, Vargas T, Ramirez de Molina A. Nutritional genomics for the characterization of the effect of bioactive molecules in lipid metabolism and related pathways. Electrophoresis 2012;33:2266-89. https://doi.org/10.1002/elps.201200084
[89] Costa N, Rosa C. Functional foods: bioactive components and physiological effects. 1 Reprint. Rúbio, Rio de Janeiro 2011. Available from https://scholar.google.com/scholar?hl=it&as_ sdt=0%2C5&q=Costa+N+and+Rosa+C.+Functional+foods%3A+bioactive+components+and+physiological+effects.+&btnG=. Accessed on: 01/07/2022.
[90] Ronteltap A, Van Trijp J, Renes R. Consumer acceptance of nutrigenomics-based personalised nutrition. Br J Nutr 2008;101:132-44. https://doi.org/10.1017/S0007114508992552
[91] Tebani A, Bekri S. Paving the Way to Precision Nutrition Through Metabolomics. Front Nutr 2019;6:41. https://doi.org/10.3389/fnut.2019.00041
[92] Norheim F, Gjelstad IM, Hjorth M, Vinknes KJ, Langleite TM, Holen T, Jensen J, Dalen KT, Karlsen AS, Kielland A. Molecular nutrition research – the modern way of performing nutritional science. Nutrients 2012;4:1898-944. https://doi.org/10.3390/ nu4121898
[93] Ong T, Rogero M. Nutrigenomics: importance of nutrient-gene interaction for health promotion. Journal of the ABESO, 2009;40. https://doi.org/10.1152/japplphysiol.00703.2003
[94] Wittenbecher C, Muhlenbruch K, Kroger J, Jacobs S, Kuxhaus O, Floegel A, Fritsche A, Pischon T, Prehn C, Adamski J, Joost HG, Boeing H, Schulze MB. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 2015;101:1241-50. https://doi.org/10.3945/ajcn.114.099150
[95] Toro-Martín D, Arsenault BJ, Després J-P, Vohl M-C. Precision nutrition: a review of personalized nutritional approaches for the prevention and management of metabolic syndrome. Nutrients 2017;9:913. https://doi.org/10.3945/ajcn.114.099150
[96] Wang DD, Hu FB. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 2018;6:41626. https://doi.org/10.1016/S2213-8587(18)30037-8
[97] Ramos-Lopez O, Panduro A, Martinez-Lopez E, Roman S. Sweet taste receptor TAS1R2 polymorphism (Val191Val) is associated with a higher carbohydrate intake and hypertriglyceridemia among the population of West Mexico. Nutrients 2016;8:101. https://doi.org/10.3390/nu8020101
[98] Lopez-Ramos O, Panduro A, Martinez-Lopez E. Genetic variant in the CD36 gene (rs1761667) is associated with higher fat intake and high serum cholesterol among the population of West Mexico. J Nutr Food Sci 2005;5:1-5. https://doi.org/10.4172/2155-9600.1000353
[99] Jiang-Hua Q, De-Chuang J, Zhen-Duo L, Shu-de C, Zhenzhen L. Association of methylenetetrahydrofolate reductase and methionine synthase polymorphisms with breast cancer risk and interaction with folate, vitamin B 6, and vitamin B 12 intakes. Tumour Biol 2014;35:11895-901. https://doi.org/10.1007/ s13277-014-2456-1
[100] Barry EL, Rees JR, Peacock JL, Mott LA, Amos CI, Bostick RM, Figueiredo JC, Ahnen DJ, Bresalier RS, Burke CA. Genetic variants in CYP2R1, CYP24A1, and VDR modify the efficacy of vitamin D3 supplementation for increasing serum 25-hydroxyvitamin D levels in a randomized controlled trial. J Clin Endocrinol Metab 2014;99:E2133-7. https://doi.org/10.1210/jc.2014-1389
[101] Arkadianos I, Valdes AM, Marinos E, Florou A, Gill RD, Grimaldi KA. Improved weight management using genetic information to personalize a calorie controlled diet. Nutr J 2007;6:1-8. https://doi.org/10.1186/1475-2891-6-29
[102] Pellatt AJ, Slattery ML, Mullany LE, Wolff RK, Pellatt DF. Dietary intake alters gene expression in colon tissue: possible underlying mechanism for the influence of diet on disease. Pharmacogenet Genomics 2016;26:294. https://doi.org/10.1097/ FPC.0000000000000217
[103] Tryndyak V, de Conti A, Kobets T, Kutanzi K, Koturbash I, Han T, Fuscoe JC, Latendresse JR, Melnyk S, Shymonyak S. Interstrain differences in the severity of liver injury induced by a choline‐and folate‐deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J 2012;26:4592-602. https://doi.org/10.1096/fj.12-209569
[104] Yubero-Serrano EM, Gonzalez-Guardia L, Rangel-Zuñiga O, Delgado-Casado N, Delgado-Lista J, Perez-Martinez P, Garcia-Rios A, Caballero J, Marin C, Gutierrez-Mariscal FM. Postprandial antioxidant gene expression is modified by Mediterranean diet supplemented with coenzyme Q 10 in elderly men and women. Age 2013;35:159-70. https://doi.org/10.1007/s11357-011-9331-4
[105] Dziedzic B, Szemraj J, Bartkowiak J, Walczewska A. Various dietary fats differentially change the gene expression of neuropeptides involved in body weight regulation in rats. Neuroendocrinol 2007;19:364-73. https://doi.org/10.1111/j.13652826.2007.01541.x
[106] Cao F, Liu T, Xu Y, Xu D, Feng S. Curcumin inhibits cell proliferation and promotes apoptosis in human osteoclastoma cell through MMP-9, NF-κB and JNK signaling pathways. Int J Clin Exp Pathol 2015;8:6037.
[107] Drabsch T, Holzapfel C. A scientific perspective of personalised gene-based dietary recommendations for weight management. Nutrients 2019;11:617. https://doi.org/10.3390/nu11030617
[108] Grimaldi KA, van Ommen B, Ordovas JM, Parnell LD, Mathers JC, Bendik I, Brennan L, Celis-Morales C, Cirillo E, Daniel H. Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice. Genes Nutr 2017;12:1-12. https://doi.org/10.1186/s12263-017-0584-0
[109] Rao AD, Sun B, Saxena A, Hopkins PN, Jeunemaitre X, Brown NJ, Adler GK, Williams JS. Polymorphisms in the serum-and glucocorticoid-inducible kinase 1 gene are associated with blood pressure and renin response to dietary salt intake. J Hum Hypertens 2013;27:176-80. https://doi.org/10.1038/jhh.2012.22
[110] Ferguson LR. Nutrigenomics approaches to functional foods. J Am Diet Assoc 2009;109:452-8. https://doi.org/10.1016/j.jada.2008.11.024
[111] Trujillo E, Davis C, Milner J. Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J Am Diet Assoc 2006;106:403-13. https://doi.org/10.1016/j.jada.2005.12.002
[112] Ferguson LR, De Caterina R, Görman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, De Luis DA, Gil Á. Guide and position of the international society of nutrigenetics/nutrigenomics on personalised nutrition: part 1-fields of precision nutrition. J Nutrigenet Nutrigenomics 2016;9:12-27. https://doi.org/10.1159/000445350
[113] Razquin C, Marti A, Martinez JA. Evidences on three relevant obesogenes: MC4R, FTO and PPARγ. Approaches for personalized nutrition. Mol Nutr Food Res 2011;55:136-49. https://doi.org/10.1002/mnfr.201000445
[114] Huang D, Xie X, Ma Y-t, Huang Y, Ma X. Endothelial lipase-384A/C polymorphism is associated with acute coronary syndrome and lipid status in elderly Uygur patients in Xinjiang. Genet Test Mol Biomarkers 2014;18:781-4. https://doi.org/10.1089/gtmb.2014.0195
[115] Shammas MA. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care 2011;14:28. https://doi.org/10.1097/MCO.0b013e32834121b1
[116] Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006;295:1135-41. https://doi.org/10.1001/jama.295.10.1135
[117] Corella D, Peloso G, Arnett DK, Demissie S, Cupples LA, Tucker K, Lai C-Q, Parnell LD, Coltell O, Lee Y-C. APOA2, dietary fat, and body mass index: replication of a gene-diet interaction in 3 independent populations. Arch Intern Med 2009;169:1897906. https://doi.org/10.1001/archinternmed.2009.343
[118] Slater NA, Rager ML, Havrda DE, Harralson AF. Genetic variation in CYP2R1 and GC genes associated with vitamin D deficiency status. J Pharm Pract 2017;30:31-6. https://doi.org/10.1177/0897190015585876
[119] Merino J, Dashti HS, Li SX, Sarnowski C, Justice AE, Graff M, Papoutsakis C, Smith CE, Dedoussis GV, Lemaitre RN. Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium. Mol Psychiatry 2019;24:1920-32. https://doi.org/10.1038/s41380-018-0079-4
[120] Camilleri G, Kiani AK, Herbst KL, Kaftalli J, Bernini A, Dhuli K, Manara E, Bonetti G, Stuppia L, Paolacci S, Dautaj A, Bertelli M. Genetics of fat deposition. Eur Rev Med Pharmacol Sci 2021;25:14-22. https://doi.org/10.26355/eurrev_202112_27329
[121] Vettori A, Pompucci G, Paolini B, Del Ciondolo I, Bressan S, Dundar M, Kenanoglu S, Unfer V, Bertelli M, Geneob P. Genetic background, nutrition and obesity: a review. Eur Rev Med Pharmacol Sci 2019;23:1751-61. https://doi.org/10.26355/eurrev_201902_17137
[122] Precone V, Beccari T, Stuppia L, Baglivo M, Paolacci S, Manara E, Miggiano G, Falsini B, Trifirò A, Zanlari A. Taste, olfactory and texture related genes and food choices: Implications on health status. Eur Rev Med Pharmacol Sci 2019;23:1305-21. https://doi.org/10.26355/eurrev_201902_17026
[123] De Caterina R, El-Sohemy A. Moving towards specific nutrigenetic recommendation algorithms: caffeine, genetic variation and cardiovascular risk. J Nutrigenet Nutrigenomics 2016;9:106-15. https://doi.org/10.1159/000446801
[124] Levy E, Ménard D, Delvin E, Stan S, Mitchell G, Lambert M, Ziv E, Feoli-Fonseca JC, Seidman E. The polymorphism at codon 54 of the FABP2 gene increases fat absorption in human intestinal explants. J Biol Chem 2001;276:39679-84. https://doi.org/10.1074/jbc.M105713200
[125] Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998;20:284-7. https://doi.org/10.1038/3099
[126] Loos RJ. The genetics of adiposity. Curr Opin Genet Dev 2018;50:86-95. https://doi.org/10.1016/j.gde.2018.02.009
[127] Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007;316:889-94. https://doi.org/10.1126/science.1141634
[128] Claussnitzer M, Dankel SN, Kim K-H, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 2015;373:895-907. https://doi.org/10.1056/NEJMoa1502214
[129] De Geus E, De Moor MH. Genes, exercise, and psychological factors. Genetic and molecular aspects of sport performance. 1st ed. Oxford: Joun Wiley & Sons 2011.
[130] Wang J, Wang LJ, Zhong Y, Gu P, Shao JQ, Jiang SS, Gong JB. CETP gene polymorphisms and risk of coronary atherosclerosis in a Chinese population. Lipids Health Dis 2013;12:1-5. https://doi.org/10.1186/1476-511X-12-176
[131] Kilpelainen TO, Qi L, Brage S, Sharp SJ, Sonestedt E, Demerath E, Ahmad T, Mora S, Kaakinen M, Sandholt CH, Holzapfel C, Autenrieth CS, Hypponen E, Cauchi S, He M, Kutalik Z, Kumari M, Stancakova A, Meidtner K, Balkau B, Tan JT, Mangino M, Timpson NJ, Song Y, Zillikens MC, Jablonski KA, Garcia ME, Johansson S, Bragg-Gresham JL, Wu Y, van Vliet-Ostaptchouk JV, Onland-Moret NC, Zimmermann E, Rivera NV, Tanaka T, Stringham HM, Silbernagel G, Kanoni S, Feitosa MF, Snitker S, Ruiz JR, Metter J, Larrad MT, Atalay M, Hakanen M, Amin N, Cavalcanti-Proenca C, Grontved A, Hallmans G, Jansson JO, Kuusisto J, Kahonen M, Lutsey PL, Nolan JJ, Palla L, Pedersen O, Perusse L, Renstrom F, Scott RA, Shungin D, Sovio U, Tammelin TH, Ronnemaa T, Lakka TA, Uusitupa M, Rios MS, Ferrucci L, Bouchard C, Meirhaeghe A, Fu M, Walker M, Borecki IB, Dedoussis GV, Fritsche A, Ohlsson C, Boehnke M, Bandinelli S, van Duijn CM, Ebrahim S, Lawlor DA, Gudnason V, Harris TB, Sorensen TI, Mohlke KL, Hofman A, Uitterlinden AG, Tuomilehto J, Lehtimaki T, Raitakari O, Isomaa B, Njolstad PR, Florez JC, Liu S, Ness A, Spector TD, Tai ES, Froguel P, Boeing H, Laakso M, Marmot M, Bergmann S, Power C, Khaw KT, Chasman D, Ridker P, Hansen T, Monda KL, Illig T, Jarvelin MR, Wareham NJ, Hu FB, Groop LC, Orho-Melander M, Ekelund U, Franks PW and Loos RJ. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med 2011;8:e1001116. https://doi.org/10.1371/journal.pmed.1001116
[132] Winnicki M, Accurso V, Hoffmann M, Pawlowski R, Dorigatti F, Santonastaso M, Longo D, Krupa‐Wojciechowska B, Jeunemaitre X, Pessina AC. Physical activity and angiotensin‐converting enzyme gene polymorphism in mild hypertensives. Am J Med Genet A 2004;125:38-44. https://doi.org/10.1002/ ajmg.a.20434
[133] Rankinen T, Rice T, Teran‐Garcia M, Rao DC, Bouchard C. FTO Genotype Is Associated With Exercise Training–induced Changes in Body Composition. Obesity 2010;18:322-6. https://doi.org/10.1038/oby.2009.205
[134] Cassidy S, Chau JY, Catt M, Bauman A, Trenell MI. Cross-sectional study of diet, physical activity, television viewing and sleep duration in 233 110 adults from the UK Biobank; the behavioural phenotype of cardiovascular disease and type 2 diabetes. BMJ Open 2016;6:e010038. https://doi.org/10.1136/ bmjopen-2015-010038
[135] Li S, Zhao JH, Luan Ja, Ekelund U, Luben RN, Khaw K-T, Wareham NJ, Loos RJ. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med 2010;7:e1000332. https://doi.org/10.1371/journal.pmed.1000332