Metabolomics application for the design of an optimal diet


Mediterranean diet
Precision nutrition
Food metabolome


Precision nutrition is an emerging branch of nutrition science that aims to use modern omics technologies (genomics, proteomics, and metabolomics) to assess an individual’s response to specific foods or dietary patterns and thereby determine the most effective diet or lifestyle interventions to prevent or treat specific diseases. Metabolomics is vital to nearly every aspect of precision nutrition. It can be targeted or untargeted, and it has many applications. Indeed, it can be used to comprehensively characterize the thousands of chemicals in foods, identify food by-products in human biofluids or tissues, characterize nutrient deficiencies or excesses, monitor biochemical responses to dietary interventions, track long- or short-term dietary habits, and guide the development of nutritional therapies. Indeed, metabolomics can be coupled with genomics and proteomics to study and advance the field of precision nutrition. Integrating omics with epidemiological and clinical data will begin to define the beneficial effects of human food metabolites. In this review, we present the metabolome and its relationship to precision nutrition. Moreover, we describe the different techniques used in metabolomics and present how metabolomics has been applied to advance the field of precision nutrition by providing notable examples and cases.


[1] Radhakrishnan EK, Ajay Kumar, Aswani R. Biocontrol mechanisms of endophytic microorganisms. Academic Press 2021.
[2] Tang Y, Zhu Y, Sang S. A novel lc‐ms based targeted metabolomic approach to study the biomarkers of food intake. Mol Nutr Food Res 2020;64:2000615.
[3] Beckmann M, Lloyd AJ, Haldar S, Favé G, Seal CJ, Brandt K, Mathers JC, Draper J. Dietary exposure biomarker-lead discovery based on metabolomics analysis of urine samples. Proc Nutr Soc 2013;72:352-61.
[4] Zhu Y, Shurlknight KL, Chen X, Sang S. Identification and pharmacokinetics of novel alkylresorcinol metabolites in human urine, new candidate biomarkers for whole-grain wheat and rye intake. J Nutr 2014;144:114-22.
[5] Pigsborg K, Magkos F. Metabotyping for Precision Nutrition and Weight Management: Hype or Hope? Curr Nutr Rep 2022;11:117-23.
[6] Hillesheim E, Brennan L. Metabotyping and its role in nutrition research. Nutrition research reviews 2020;33:33-42.
[7] Palmnäs M, Brunius C, Shi L, Rostgaard-Hansen A, Torres NE, González-Domínguez R, Zamora-Ros R, Ye YL, Halkjær J, Tjønneland A, Riccardi G, Giacco R, Costabile G, Vetrani C, Nielsen J, Andres-Lacueva C, Landberg R. Perspective: Metabotyping-A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease. Adv Nutr 2020;11:524-32.
[8] Bush CL, Blumberg JB, El-Sohemy A, Minich DM, Ordovás JM, Reed DG, Behm VAY. Toward the Definition of Personalized Nutrition: A Proposal by The American Nutrition Association. J Am Coll Nutr 2020;39:5-15.
[9] Dettmer K, Hammock BD. Metabolomics--a new exciting field within the “omics” sciences. Environ Health Perspect 2004;112:A396-7.
[10] Emwas AH, Roy R, McKay RT, Tenori L, Saccenti E, Gowda GAN, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS. NMR Spectroscopy for Metabolomics Research. Metabolites 2019;9:123.
[11] Diémé B, Lefèvre A, Nadal-Desbarats L, Galineau L, Madji Hounoum B, Montigny F, Blasco H, Andres CR, Emond P, Mavel S. Workflow methodology for rat brain metabolome exploration using NMR, LC-MS and GC-MS analytical platforms. J Pharm Biomed Anal 2017;142:270-8.
[12] Amberg A, Riefke B, Schlotterbeck G, Ross A, Senn H, Dieterle F, Keck M. NMR and MS Methods for Metabolomics. Methods Mol Biol 2017;1641:229-58.
[13] Cao G, Song Z, Hong Y, Yang Z, Song Y, Chen Z, Chen Z, Cai Z. Large-scale targeted metabolomics method for metabolite profiling of human samples. Anal Chim Acta 2020;1125:144-51.
[14] Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted Metabolomics Strategies-Challenges and Emerging Directions. J Am Soc Mass Spectrom 2016;27:1897-
[15] González-Domínguez R, Jáuregui O, Mena P, Hanhineva K, Tinahones FJ, Angelino D, Andrés-Lacueva C. Quantifying the human diet in the crosstalk between nutrition and health by multi-targeted metabolomics of food and microbiota-derived metabolites. Int J Obes (Lond) 2020;44:2372-81.
[16] Yoon HR. Screening newborns for metabolic disorders based on targeted metabolomics using tandem mass spectrometry. Ann Pediatr Endocrinol Metab 2015;20:119-24.
[17] Ulaszewska M, Garcia-Aloy M, Vázquez-Manjarrez N, Soria-Florido MT, Llorach R, Mattivi F, Manach C. Food intake biomarkers for berries and grapes. Genes Nutr 2020;15:17.
[18] Collins C, McNamara AE, Brennan L. Role of metabolomics in identification of biomarkers related to food intake. Proc Nutr Soc 2019;78:189-96.
[19] Milošević M, Arsić A, Cvetković Z, Vučić V. Memorable food: fighting age-related neurodegeneration by precision nutrition. Front Nutr 2021;8:688086.
[20] Yusof NA, Isha A, Ismail IS, Khatib A, Shaari K, Abas F, Rukayadi Y. Infrared-metabolomics approach in detecting changes in Andrographis paniculata metabolites due to different harvesting ages and times. J Sci Food Agric 2015;95:2533-43.
[21] Clarke NJ. Mass Spectrometry in Precision Medicine: Phenotypic Measurements Alongside Pharmacogenomics. Clin Chem. 2016;62:70-6.
[22] Pandey R, Caflisch L, Lodi A, Brenner AJ, Tiziani S. Metabolomic signature of brain cancer. Mol Carcinog 2017;56:2355-71.
[23] Gray N, Lawler NG, Yang R, Morillon AC, Gay MCL, Bong SH, Holmes E, Nicholson JK, Whiley L. A simultaneous exploratory and quantitative amino acid and biogenic amine metabolic profiling platform for rapid disease phenotyping via UPLC-QToF-MS. Talanta 2021;223:121872.
[24] Cao R, Liu X, Liu Y, Zhai X, Cao T, Wang A, Qiu J. Applications of nuclear magnetic resonance spectroscopy to the evaluation of complex food constituents. Food Chem 2021;342:128258.
[25] Huang B, Xu L, Wang N, Ying J, Zhao Y, Huang S. trans-4-Fluoro-l-proline: A Sensitive 19F NMR Probe for the rapid simultaneous enantiomeric analysis of multicomponent amines. Anal Chem 2022;94:1867-13.
[26] Zhao L, Pinon AC, Emsley L, Rossini AJ. DNP-enhanced solid-state NMR spectroscopy of active pharmaceutical ingredients. Magn Reson Chem 2018;56:583-609.
[27] Soininen P, Kangas AJ, Würtz P, Tukiainen T, Tynkkynen T, Laatikainen R, Järvelin MR, Kähönen M, Lehtimäki T, Viikari J, Raitakari OT, Savolainen MJ, Ala-Korpela M. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 2009;134:1781-5.
[28] Wishart DS. Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol 2008;19:482-93.
[29] Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr 2018;5:87.
[30] Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remón A, M’hiri N, García-Lobato P, Manach C, Knox C, Eisner R, Wishart DS, Scalbert A. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database (Oxford) 2013;2013:bat070.
[31] Forte G, Bocca B, Senofonte O, Petrucci F, Brusa L, Stanzione P, Zannino S, Violante N, Alimonti A, Sancesario G. Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. J Neural Transm (Vienna) 2004;111:1031-40.
[32] Scalbert A, Brennan L, Manach C, Andres-Lacueva C, Dragsted LO, Draper J, Rappaport SM, van der Hooft JJ, Wishart DS. The food metabolome: a window over dietary exposure. Am J Clin Nutr 2014;99:1286-308.
[33] Khakimov B, Engelsen SB. Resveratrol in the foodomics era: 1:25,000. Ann N Y Acad Sci 2017;1403:48-58.
[34] Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao L, Nicholson JK, Elliott P. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature 2008;453:396-400.
[35] Smith CA, O’Maille G, Want EJ, Qin C, Trauger SA, Brandon TR, Custodio DE, Abagyan R, Siuzdak G. METLIN: a metabolite mass spectral database. Ther Drug Monit 2005;27:747-51.
[36] van der Werf MJ, Overkamp KM, Muilwijk B, Coulier L, Hankemeier T. Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 2007;370:17-25.
[37] Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012;336:1262-7.
[38] Brouwer-Brolsma EM, Brennan L, Drevon CA, van Kranen H, Manach C, Dragsted LO, Roche HM, Andres-Lacueva C, Bakker SJL, Bouwman J, Capozzi F, De Saeger S, Gundersen TE, Kolehmainen M, Kulling SE, Landberg R, Linseisen J, Mattivi F, Mensink RP, Scaccini C, Skurk T, Tetens I, Vergeres G, Wishar DS, Scalbert A, Feskens EJM. Combining traditional dietary assessment methods with novel metabolomics techniques: present efforts by the Food Biomarker Alliance. Proc Nutr Soc 2017;76:619-27.
[39] Gao Q, Praticò G, Scalbert A, Vergères G, Kolehmainen M, Manach C, Brennan L, Afman LA, Wishart DS, Andres-Lacueva C, Garcia-Aloy M, Verhagen H, Feskens EJM, Dragsted LO. A scheme for a flexible classification of dietary and health biomarkers. Genes Nutr 2017;12:34.
[40] Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, Wishart DS, Scalbert A. Exposome-Explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res 2017;45:D979-84.
[41] Wishart DS, Bartok B, Oler E, Liang KYH, Budinski Z, Berjanskii M, Guo A, Cao X, Wilson M. MarkerDB: an online database of molecular biomarkers. Nucleic Acids Res 2021;49:D1259-67.
[42] Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018;46:D608-17.
[43] Akimoto N, Ara T, Nakajima D, Suda K, Ikeda C, Takahashi S, Muneto R, Yamada M, Suzuki H, Shibata D, Sakurai N. FlavonoidSearch: A system for comprehensive flavonoid annotation by mass spectrometry. Sci Rep 2017;7:1243.
[44] Neveu V, Nicolas G, Salek RM, Wishart DS, Scalbert A. Exposome-Explorer 2.0: an update incorporating candidate dietary biomarkers and dietary associations with cancer risk. Nucleic Acids Res 2020;48:D908-12.
[45] Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, Knox C, Llorach R, Eisner R, Cruz J, Neveu V, Wishart D, Manach C, Andres-Lacueva C, Scalbert A. Phenol-Explorer 2.0: a major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. Database (Oxford) 2012;2012:bas031.
[46] Giacomoni F, Da Silva AL, Bronze M, Gladine C, Hollman P, Kopec R, Yanwen DL, Micheau P, Dos Santos MC, Pavot B, Schmidt G. PhytoHub, an online platform to gather expert knowledge on polyphenols and other dietary phytochemicals. 8. International Conference on Polyphenols and Health (ICPH 2017) 2017. Available at Accessed on: 01/07/2022.
[47] An Y, Feng L, Zhang X, Wang Y, Wang Y, Tao L, Qin Z, Xiao R. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin Epigenetics 2019;11:139.
[48] Hanhineva K, Barri T, Kolehmainen M, Pekkinen J, Pihlajamäki J, Vesterbacka A, Solano-Aguilar G, Mykkänen H, Dragsted LO, Urban JF Jr, Poutanen K. Comparative nontargeted profiling of metabolic changes in tissues and biofluids in high-fat diet-fed Ossabaw pig. J Proteome Res 2013;12:3980-92.
[49] Kjeldahl K Bro R. Some common misunderstandings in chemometrics. J Chemometr 2010;24:558-64.
[50] Wold S, Martens H, Wold H, Ruhe A, Kågstrøm B, eds. The multivariate calibration problem in chemistry solved by the PLS methods. In: Ruhe A Kågstrøm B, eds. Proceedings of the Conference on Matrix Pencils, Lecture Notes in Mathematics. Heidelberg, Germany: Springer Verlag 1983:286-93.
[51] Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, Tang C, Ravichandran V, Liao P, Papadimitriou K, Yin J. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020;9:1045.
[52] Roager HM, Dragsted LO. Diet‐derived microbial metabolites in health and disease. Nutrition Bull 2019;44:21627.
[53] Danneskiold-Samsøe NB, Dias de Freitas Queiroz Barros H, Santos R, Bicas JL, Cazarin CBB, Madsen L, Kristiansen K, Pastore GM, Brix S, Maróstica Júnior MR. Interplay between food and gut microbiota in health and disease. Food Res Int 2019;115:23-31.
[54] Farag MA, Abdelwareth A, Sallam IE, El Shorbagi M, Jehmlich N, Fritz-Wallace K, Serena Schäpe S, Rolle-Kampczyk U, Ehrlich A, Wessjohann LA, von Bergen M. Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model. J Adv Res 2020;23:47-59.
[55] Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut microbiota and immune system interactions. Microorganisms 2020;8:1587.
[56] LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol. 2013;24:160-8.
[57] Shen J, Obin MS, Zhao L. The gut microbiota, obesity and insulin resistance. Mol Aspects Med 2013;34:39-58.
[58] Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019;7:e7502.
[59] Naureen Z, Dautaj A, Anpilogov K, Camilleri G, Dhuli K, Tanzi B, Maltese PE, Cristofoli F, De Antoni L, Beccari T, Dundar M, Bertelli M. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed 2020;91:e2020024.
[60] Kiani AK, Anpilogov K, Dhuli K, Paolacci S, Benedetti S, Manara E, Guerri G, Dautaj A, Beccari T, Dundar M, Bertelli M. Naturally-occurring and cultured bacteriophages in human therapy. Eur Rev Med Pharmacol Sci 2021;25:101-7.
[61] Ingrosso G, Saldi S, Marani S, Wong A, Bertelli M, Aristei C, Zelante T. Breakdown of symbiosis in radiation-induced oral mucositis. J Fungi (Basel) 2021;7:290.
[62] Andersen MB, Rinnan Å, Manach C, Poulsen SK, Pujos-Guillot E, Larsen TM, Astrup A, Dragsted LO. Untargeted metabolomics as a screening tool for estimating compliance to a dietary pattern. J Proteome Res 2014;13:1405-18.
[63] Meslier V, Laiola M, Roager HM, De Filippis F, Roume H, Quinquis B, Giacco R, Mennella I, Ferracane R, Pons N, Pasolli E, Rivellese A, Dragsted LO, Vitaglione P, Ehrlich SD, Ercolini D. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 2020;69:1258-68.
[64] Posma JM, Garcia-Perez I, Frost G, Aljuraiban GS, Chan Q, Van Horn L, Daviglus M, Stamler J, Holmes E, Elliott P, Nicholson JK. Nutriome-metabolome relationships provide insights into dietary intake and metabolism. Nat Food 2020;1:426-36.
[65] Atkinson W, Downer P, Lever M, Chambers ST, George PM. Effects of orange juice and proline betaine on glycine betaine and homocysteine in healthy male subjects. Eur J Nutr 2007;46:446-52.
[66] Wittenbecher C, Mühlenbruch K, Kröger J, Jacobs S, Kuxhaus O, Floegel A, Fritsche A, Pischon T, Prehn C, Adamski J, Joost HG, Boeing H, Schulze MB. Amino acids, lipid metabolites, and ferritin as potential mediators linking red meat consumption to type 2 diabetes. Am J Clin Nutr 2015;101:1241-50.
[67] Li K, Brennan L, McNulty BA, Bloomfield JF, Duff DJ, Devlin NF, Gibney MJ, Flynn A, Walton J, Nugent AP. Plasma fatty acid patterns reflect dietary habits and metabolic health: A cross-sectional study. Mol Nutr Food Res 2016;60:2043-52.
[68] Bouchard-Mercier A, Rudkowska I, Lemieux S, Couture P, Vohl MC. The metabolic signature associated with the Western dietary pattern: a cross-sectional study. Nutr J 2013;12:158.
[69] Heinzmann SS, Holmes E, Kochhar S, Nicholson JK, Schmitt-Kopplin P. 2-Furoylglycine as a candidate biomarker of coffee consumption. J Agric Food Chem 2015;63:8615-21.
[70] Garcia-Aloy M, Llorach R, Urpi-Sarda M, Tulipani S, Estruch R, Martínez-González MA, Corella D, Fitó M, Ros E, Salas-Salvadó J, Andres-Lacueva C. Novel multimetabolite prediction of walnut consumption by a urinary biomarker model in a free-living population: the PREDIMED study. J Proteome Res 2014;13:3476-83.
[71] Andersen MB, Kristensen M, Manach C, Pujos-Guillot E, Poulsen SK, Larsen TM, Astrup A, Dragsted L. Discovery and validation of urinary exposure markers for different plant foods by untargeted metabolomics. Anal Bioanal Chem 2014;406:1829-44.
[72] de Toro-Martín J, Arsenault BJ, Després JP, Vohl MC. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome. Nutrients 2017;9:913.
[73] Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction of glycemic responses. Cell 2015;163:1079-94.
[74] LeVatte M, Keshteli AH, Zarei P, Wishart DS. Applications of Metabolomics to Precision Nutrition. Lifestyle Genom 2022;15:1-9.
[75] Anwar MA, Barrera-Machuca AA, Calderon N, Wang W, Tausan D, Vayali T, Wishart D, Cullis P, Fraser R. Value-based healthcare delivery through metabolomics-based personalized health platform. Healthc Manage Forum 2020;33:126-34.