Implication of the Mediterranean diet on the human epigenome
pdf

Keywords

Epigenetics
Mediterranean Diet
Nutriepigenetics
Polyphenols

Abstract

Epigenetics, defined as “hereditary changes in gene expression that occur without any change in the DNA sequence”, consists of various epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. The epigenome, which has a dynamic structure in response to intracellular and extracellular stimuli, has a key role in the control of gene activity, since it is located at the intersection of cellular information encoded in the genome and molecular/chemical information of extracellular origin. The focus shift of studies to epigenetic reprogramming has led to the formation and progressive importance of a concept called “nutriepigenetics”, whose aim is to prevent diseases by intervening on nutrition style. Among the diet types adopted in the world, the renowned Mediterranean Diet (MD), being rich in unsaturated fatty acids and containing high levels of whole grain foods and large quantities of fruits, vegetables, and legumes, has shown numerous advantages in excluding chronic diseases. Additionally, the fact that this diet is rich in polyphenols with high antioxidant and anti-inflammatory properties has an undeniable effect in turning some cellular pathways against the disease. It is also apparent that the effects of polyphenols on the epigenome cause changes in mechanisms such as DNA methylation and histone acetylation/deacetylation, which have a regulatory effect on gene regulation. This review presents the effects of long-term consumption of nutrients from the MD on the epigenome and discusses the benefits of this diet in the treatment and even prevention of chronic diseases.

https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2746
pdf

References

[1] Waddington CH. The epigenotype. 1942. Int J Epidemiol 2012;41:10-3. https://doi.org/10.1093/ije/dyr184
[2] Peaston AE, Whitelaw E. Epigenetics and phenotypic variation in mammals. Mamm Genome 2006;17:365-74. https://doi.org/10.1007/s00335-005-0180-2
[3] Whitelaw NC, Whitelaw E. How lifetimes shape epigenotype within and across generations. Hum Mol Genet 2006;15(Suppl 2):131-7. https://doi.org/10.1093/hmg/ddl200
[4] Thiagalingam S. Epigenetic memory in development and disease: Unraveling the mechanism. Biochim Biophys Acta Rev Cancer 2020;1873:188349. https://doi.org/10.1016/j. bbcan.2020.188349
[5] Kaelin WG, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013;153:56-69. https://doi.org/10.1016/j.cell.2013.03.004
[6] Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N Engl J Med 2018;378:1323-34. https://doi.org/10.1056/nejmra1402513
[7] Bachman KE, Rountree MR, Baylin SB. Dnmt3a and Dnmt3b Are Transcriptional Repressors That Exhibit Unique Localization Properties to Heterochromatin. J Biol Chem 2001;276:32282-7. https://doi.org/10.1074/jbc.M104661200
[8] Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005;6:597-610. https://doi.org/10.1038/nrg1655
[9] Gupta R, Nagarajan A, Wajapeyee N. Advances in genomewide DNA methylation analysis. Biotechniques 2010;49(4). https://doi.org/10.2144/000113493
[10] Tamaru H. Confining euchromatin/heterochromatin territory: Jumonji crosses the line. Genes Dev 2010;24:1465-78. https://doi.org/10.1101/gad.1941010
[11] Ramaswamy A, Ioshikhes I. Dynamics of modeled oligonucleosomes and the role of histone variant proteins in nucleosome organization, 1st ed. Elsevier Inc. 2013. https://doi.org/10.1016/B978-0-12-410523-2.00004-3
[12] Prakash K, Fournier D. Evidence for the implication of the histone code in building the genome structure. BioSystems 2018;164:49-59. https://doi.org/10.1016/j. biosystems.2017.11.005
[13] Vahid F, Zand H, Nosrat-Mirshekarlou E, Najafi R, Hekmatdoost A. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: A review. Gene 2015;562:815. https://doi.org/10.1016/j.gene.2015.02.045
[14] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21(3):381-95. https://doi.org/10.1038/cr.2011.22
[15] Xhemalce B, Dawson MA, Bannister AJ. Histone Modifications. In: Encyclopedia of Molecular Cell Biology and Molecular Medicine, 2011. https://doi.org/10.1002/3527600906. mcb.201100004
[16] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11. https://doi.org/10.1038/35888
[17] Moffat J, Sabatini DM. Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol 2006;7:177-87. https://doi.org/10.1038/nrm1860
[18] Thakur A. RNA interference revolution. Electron J Biotechnol 2003;6:36-46. https://doi.org/10.2225/vol6-issue1-fulltext-1
[19] Katoch R, Thakur N. RNA interference: A promising technique for the improvement of traditional crops. Int J Food Sci Nutr 2013;64:248-59. https://doi.org/10.3109/09637486.2012.713918
[20] Grosso G, Bella F, Godos J, Sciacca S, Del Rio D, Ray S, Galvano F, Giovannucci EL. Possible role of diet in cancer: Systematic review and multiple meta-analyses of dietary patterns, lifestyle factors, and cancer risk. Nutr Rev 2017;75:405-19. https://doi.org/10.1093/nutrit/nux012
[21] Castelló A, Amiano P, Fernández de Larrea N, Martín V, Alonso MH, Castaño-Vinyals G, Pérez-Gómez B, OlmedoRequena R, Guevara M, Fernandez-Tardon G, Dierssen-Sotos T, Llorens-Ivorra C, Huerta JM, Capelo R, Fernández-Villa T, Díez-Villanueva A, Urtiaga C, Castilla J, Jiménez-Moleón JJ, Moreno V, Dávila-Batista V, Kogevinas M, Aragonés N, Pollán M. Low adherence to the western and high adherence to the mediterranean dietary patterns could prevent colorectal cancer. Eur J Nutr 2019;58:1495-505. https://doi.org/10.1007/s00394018-1674-5
[22] Tripp ML, Dahlberg CJ, Eliason S, Lamb JJ, Ou JJ, Gao W, Bhandari J, Graham D, Dudleenamjil E, Babish JG. A LowGlycemic, Mediterranean Diet and Lifestyle Modification Program with Targeted Nutraceuticals Reduces Body Weight, Improves Cardiometabolic Variables and Longevity Biomarkers in Overweight Subjects: A 13-Week Observational Trial. J Med Food 2019;22:479-89. https://doi.org/10.1089/jmf.2018.0063
[23] Willett WC, Sacks F, Trichopoulou A, Drescher G, FerroLuzzi A, Helsing E, Trichopoulos D. Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr 1995;61:1402S-1406S. https://doi.org/10.1093/ajcn/61.6.1402S
[24] Farràs M, Almanza-Aguilera E, Hernáez Á, Agustí N, Julve J, Fitó M, Castañer O. Beneficial effects of olive oil and Mediterranean diet on cancer physio-pathology and incidence. Semin Cancer Biol 2021;73:178-95. https://doi.org/10.1016/j.semcancer.2020.11.011
[25] de Polo A, Labbé DP. Diet-dependent metabolic regulation of DNA double-strand break repair in cancer: More choices on the menu. Cancer Prev Res 2021;14:403-14. https://doi.org/10.1158/1940-6207.CAPR-20-0470
[26] Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010;11:220-8. https://doi.org/10.1038/nrm2858
[27] Halazonetis TD, Gorgoulis VG, Bartek J. An OncogeneInduced DNA Damage Model for Cancer Development. Science 2008;319:1352-5. https://doi.org/10.1126/science.1140735
[28] Aagaard-Tillery KM, Grove K, Bishop J, Ke X, Fu Q, McKnight R, Lane RH. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol 2008;41:91-102. https://doi.org/10.1677/JME-08-0025
[29] Tanoue S, Uto H, Kumamoto R, Arima S, Hashimoto S, Nasu Y, Takami Y, Moriuchi A, Sakiyama T, Oketani M, Ido A, Tsubouchi H. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat. Biochem Biophys Res Commun 2011;407:163-8. https://doi.org/10.1016/j.bbrc.2011.02.131
[30] Prado EL, Dewey KG. Nutrition and brain development in early life. Nutr Rev 2014;72:267-84. https://doi.org/10.1111/nure.12102
[31] Dominguez-Salas P, Cox SE, Prentice AM, Hennig BJ, Moore SE. Maternal nutritional status, C 1 metabolism and offspring DNA methylation: A review of current evidence in human subjects. Proc Nutr Soc 2012;71:154-65. https://doi.org/10.1017/S0029665111003338
[32] Bryce J, Coitinho D, Darnton-Hill I, Pelletier D, PinstrupAndersen P. Maternal and child undernutrition: effective action at national level. Lancet 2008;371:510-26. https://doi.org/10.1016/S0140-6736(07)61694-8
[33] Roseboom TJ, Painter RC, Van Abeelen AFM, Veenendaal MVE, De Rooij SR. Hungry in the womb: What are the consequences? Lessons from the Dutch famine. Maturitas 2011;70:141-5. https://doi.org/10.1016/j.maturitas.2011.06.017
[34] Ruemmele FM, Garnier-Lenglin H. Why are genetics important for nutrition? Lessons from epigenetic research. Ann Nutr Metab 2012;60(Suppl 3):38-43. https://doi.org/10.1159/000337363
[35] Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 2008;105:17046-9. https://doi.org/10.1073/ pnas.0806560105
[36] Fransen HP, Peeters PHM, Beulens JWJ, Boer JMA, De Wit GA, Onland-Moret NC, Van Der Schouw YT, BuenodeMesquita HB, Hoekstra J, Elias SG, May AM. Exposure to famine at a young age and unhealthy lifestyle behavior later in life. PLoS One 2016;11:1-11. https://doi.org/10.1371/journal. pone.0156609
[37] Lumey LH, Stein AD, Kahn HS, Van der Pal-de Bruin KM, Blauw GJ, Zybert PA, Susser ES. Cohort profile: The Dutch Hunger Winter families study. Int J Epidemiol 2007;36:1196204. https://doi.org/10.1093/ije/dym126
[38] van Abeelen AFM, Elias SG, Bossuyt PMM, Grobbee DE, van der Schouw YT, Roseboom TJ, Uiterwaal CSPM. Famine Exposure in the Young and the Risk of Type 2 Diabetes in Adulthood. Diabetes 2012;61:2255-60. https://doi.org/10.2337/ db11-1559
[39] van Abeelen AFM, Elias SG, Bossuyt PMM, Grobbee DE, van der Schouw YT, Roseboom TJ, Uiterwaal CSPM. Cardiovascular consequences of famine in the young. Eur Heart J 2012;33:538-45. https://doi.org/10.1093/eurheartj/ehr228
[40] Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: An overview. Reprod Toxicol 2005;20:345-52. https://doi.org/10.1016/j. reprotox.2005.04.005
[41] Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, Slieker RC, Stok AP, Thijssen PE, Müller F, van Zwet EW, Bock C, Meissner A, Lumey LH, Eline Slagboom P, Heijmans BT. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat Commun 2014;5:5592. https://doi.org/10.1038/ncomms6592
[42] Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev 2006;82:485-91. https://doi.org/10.1016/j. earlhumdev.2006.07.001
[43] Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res 2006;113:279-91. https://doi.org/10.1159/000090843
[44] Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 2003;299:1753-5. https://doi.org/10.1126/ science.1080902
[45] Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S, Suleria HAR. Natural polyphenols: An overview. Int J Food Prop 2017;20:1689-99. https://doi.org/10.1 080/10942912.2016.1220393
[46] El Gharras H. Polyphenols: Food sources, properties and applications A review. Int J Food Sci Technol 2009;44:2512-8. https://doi.org/10.1111/j.1365-2621.2009.02077.x
[47] Ganesan K, Xu B. A critical review on polyphenols and health benefits of black soybeans. Nutrients 2017;9:1-17. https://doi.org/10.3390/nu9050455
[48] Kalea AZ, Drosatos K, Buxton JL. Nutriepigenetics and cardiovascular disease. Curr Opin Clin Nutr Metab Care 2018;21:252-9. https://doi.org/10.1097/ MCO.0000000000000477
[49] Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr 2005;81:215S-217S. https://doi.org/10.1093/ajcn/81.1.215S
[50] D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 2007;43:348-61.
[51] Valdés L, Cuervo A, Salazar N, Ruas-Madiedo P, Gueimonde M, González S. The relationship between phenolic compounds from diet and microbiota: Impact on human health. Food Funct 2015;6:2424-39. https://doi.org/10.1039/c5fo00322a
[52] Desch S, Schmidt J, Kobler D, Sonnabend M, Eitel I, Sareban M, Rahimi K, Schuler G, Thiele H. Effect of Cocoa Products on Blood Pressure: Systematic Review and Meta-Analysis. Am J Hypertens 2010;23:97-103. https://doi.org/10.1038/ ajh.2009.213
[53] Hu J, Shen T, Xie J, Wang S, He Y, Zhu F. Curcumin modulates covalent histone modification and TIMP1 gene activation to protect against vascular injury in a hypertension rat model. Exp Ther Med 2017;14:5896-902. https://doi.org/10.3892/ etm.2017.5318
[54] Milošević M, Arsić A, Cvetković Z, Vučić V. Memorable Food: Fighting Age-Related Neurodegeneration by Precision Nutrition. Front Nutr 2021;81-13. https://doi.org/10.3389/ fnut.2021.688086
[55] Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris) 2019;175:724-41. https://doi.org/10.1016/j. neurol.2019.08.005
[56] Lee JH, Wendorff TJ, Berger JM. Resveratrol: A novel type of topoisomerase II inhibitor. J Biol Chem 2017;292:21011-22. https://doi.org/10.1074/jbc.M117.810580
[57] Izquierdo-Torres E, Hernández-Oliveras A, MenesesMorales I, Rodríguez G, Fuentes-García G, Zarain-Herzberg Á. Resveratrol up-regulates ATP2A3 gene expression in breast cancer cell lines through epigenetic mechanisms. Int J Biochem Cell Biol 2019;113:37-47. https://doi.org/10.1016/j. biocel.2019.05.020
[58] Fuso A, Nicolia V, Cavallaro RA, Scarpa S. DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem 2011;22:242-51. https://doi.org/10.1016/j.jnutbio.2010.01.010
[59] Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S. Changes in Presenilin 1 gene methylation pattern in dietinduced B vitamin deficiency. Neurobiol Aging 2011;32:18799. https://doi.org/10.1016/j.neurobiolaging.2009.02.013
[60] Carlos-Reyes Á, López-González JS, Meneses-Flores M, Gallardo-Rincón D, Ruíz-García E, Marchat LA, AstudilloDe La Vega H, Hernández De La Cruz ON, López-Camarillo C. Dietary compounds as epigenetic modulating agents in cancer. Front Genet 2019;10:1-14. https://doi.org/10.3389/ fgene.2019.00079
[61] Hu C, Liu Y, Teng M, Jiao K, Zhen J, Wu M, Li Z. Resveratrol inhibits the proliferation of estrogen receptor-positive breast cancer cells by suppressing EZH2 through the modulation of ERK1/2 signaling. Cell Biol Toxicol 2019;35:445-56. https://doi.org/10.1007/s10565-019-09471-x
[62] Ren X, Bai X, Zhang X, Li Z, Tang L, Zhao X, Li Z, Ren Y, Wei S, Wang Q, Liu C, Ji J. Quantitative Nuclear Proteomics Identifies that miR-137-mediated EZH2 Reduction Regulates Resveratrol-induced Apoptosis of Neuroblastoma Cells*. Mol Cell Proteomics 2015;14:316-28. https://doi.org/10.1074/mcp. M114.041905
[63] Ma X, Kang S. Functional implications of DNA methylation in adipose biology. Diabetes 2019;68:871-8. https://doi.org/10.2337/dbi18-0057
[64] Zwamborn RAJ, Slieker RC, Mulder PCA, Zoetemelk I, Verschuren L, Suchiman HED, Toet KH, Droog S, Slagboom PE, Kooistra T, Kleemann R, Heijmans BT. Prolonged high-fat diet induces gradual and fat depot-specific DNA methylation changes in adult mice. Sci Rep 2017;7:43261. https://doi.org/10.1038/srep43261
[65] Perfilyev A, Dahlman I, Gillberg L, Rosqvist F, Iggman D, Volkov P, Nilsson E, Risérus U, Ling C. Impact of polyunsaturated and saturated fat overfeeding on the DNAmethylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr 2017;105:991-1000. https://doi.org/10.3945/ajcn.116.143164
[66] Aguirre L, Fernández-Quintela A, Arias N, Portillo M. Resveratrol: Anti-Obesity Mechanisms of Action. Molecules 2014;19:18632-55. https://doi.org/10.3390/ molecules191118632
[67] Nettore IC, Rocca C, Mancino G, Albano L, Amelio D, Grande F, Puoci F, Pasqua T, Desiderio S, Mazza R, Terracciano D, Colao A, Bèguinot F, Russo GL, Dentice M, Macchia PE, Sinicropi MS, Angelone T, Ungaro P. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. J Nutr Biochem 2019;69:151-62. https://doi.org/10.1016/j.jnutbio.2019.03.019
[68] Fortunato IM, dos Santos TW, Ferraz LFC, Santos JC, Ribeiro ML. Effect of Polyphenols Intake on Obesity-Induced Maternal Programming. Nutrients 2021;13:2390. https://doi.org/10.3390/ nu13072390
[69] Moon H-S, Chung C-S, Lee H-G, Kim T-G, Choi Y-J, Cho C-S. Inhibitory Effect of (−)-Epigallocatechin-3-Gallate on Lipid Accumulation of 3T3-L1 Cells**. Obesity 2007;15:2571-82. https://doi.org/10.1038/oby.2007.309
[70] Chan CY, Wei L, Castro-Muñozledo F, Koo WL. (−)-Epigallocatechin-3-gallate blocks 3T3-L1 adipose conversion by inhibition of cell proliferation and suppression of adipose phenotype expression. Life Sci 2011;89:779-85. https://doi.org/10.1016/j.lfs.2011.09.006
[71] Aggarwal R, Jha M, Shrivastava A, Jha AK. Natural compounds: Role in reversal of epigenetic changes. Biochem 2015;80:97289. https://doi.org/10.1134/S0006297915080027
[72] Khan MA, Hussain A, Sundaram MK, Alalami U, Gunasekera D, Ramesh L, Hamza A, Quraishi U. (-)-Epigallocatechin-3gallate reverses the expression of various tumor-suppressor genes by inhibiting DNA methyltransferases and histone deacetylases in human cervical cancer cells. Oncol Rep 2015;33:1976-84. https://doi.org/10.3892/or.2015.3802
[73] Vacca RA, Valenti D, Caccamese S, Daglia M, Braidy N, Nabavi SM. Plant polyphenols as natural drugs for the management of Down syndrome and related disorders. Neurosci Biobehav Rev 2016;71865-77. https://doi.org/10.1016/j. neubiorev.2016.10.023
[74] Ergoren MC, Paolacci S, Manara E, Dautaj A, Dhuli K, Anpilogov K, Camilleri G, Suer HK, Sayan M, Tuncel G, Sultanoglu N, Farronato M, Tartaglia GM, Dundar M, Farronato G, Gunsel IS, Bertelli M, Sanlidag T. A pilot study on the preventative potential of alpha-cyclodextrin and hydroxytyrosol against SARS-CoV-2 transmission. Acta Biomed 2020:911-7. https://doi.org/10.23750/abm.v91i13-S.10817
[75] Paolacci S, Ergoren MC, De Forni D, Manara E, Poddesu B, Cugia G, Dhuli K, Camilleri G, Tuncel G, Kaya Suer H, Sultanoglu N, Sayan M, Dundar M, Beccari T, Ceccarini MR, Gunsel IS, Dautaj A, Sanlidag T, Connelly ST, Tartaglia GM, Bertelli M. In vitro and clinical studies on the efficacy of α-cyclodextrin and hydroxytyrosol against SARS-CoV-2 infection. Eur Rev Med Pharmacol Sci 2021;25:81-9. https://doi.org/10.26355/eurrev_202112_27337
[76] Sirianni R, Chimento A, De Luca A, Casaburi I, Rizza P, Onofrio A, Iacopetta D, Puoci F, Andò S, Maggiolini M, Pezzi V. Oleuropein and hydroxytyrosol inhibit MCF-7 breast cancer cell proliferation interfering with ERK1/2 activation. Mol Nutr Food Res 2010;54:833-40. https://doi.org/10.1002/ mnfr.200900111
[77] Rosignoli P, Fuccelli R, Sepporta MV, Fabiani R. In vitro chemo-preventive activities of hydroxytyrosol: the main phenolic compound present in extra-virgin olive oil. Food Funct 2016;7:301-7. https://doi.org/10.1039/C5FO00932D
[78] Román GC, Jackson RE, Reis J, Román AN, Toledo JB, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris) 2019;175:705-23. https://doi.org/10.1016/j.neurol.2019.07.017
[79] Wang P, Yamabe N, Hong CJ, Bai HW, Zhu BT. Caffeic acid phenethyl ester, a coffee polyphenol, inhibits DNA methylation in vitro and in vivo. Eur J Pharmacol 2020;887:173464. https://doi.org/10.1016/j.ejphar.2020.173464
[80] Cione E, La Torre C, Cannataro R, Caroleo MC, Plastina P, Gallelli L. Quercetin, Epigallocatechin Gallate, Curcumin, and Resveratrol: From Dietary Sources to Human MicroRNA Modulation. Molecules 2019;25:63. https://doi.org/10.3390/ molecules25010063
[81] Wang S wei, Sheng H, Bai Y feng, Weng Y yuan, Fan X yu, Zheng F, Fu J qi, Zhang F. Inhibition of histone acetyltransferase by naringenin and hesperetin suppresses Txnip expression and protects pancreatic β cells in diabetic mice: Naringenin and hesperetin protect pancreatic β cells. Phytomedicine 2021;88:153454. https://doi.org/10.1016/j. phymed.2020.153454
[82] Kocabas Ş, Sanlier N. A comprehensive overview of the complex relationship between epigenetics, bioactive components, cancer, and aging. Crit Rev Food Sci Nutr 2021;0:1-13. https://doi.org/10.1080/10408398.2021.1986803
[83] Lee YM, Yoon Y, Yoon H, Park HM, Song S, Yeum KJ. Dietary anthocyanins against obesity and inflammation. Nutrients 2017;9:1-15. https://doi.org/10.3390/nu9101089
[84] Persico G, Casciaro F, Marinelli A, Tonelli C, Petroni K, Giorgio M. Comparative analysis of histone h3k4me3 distribution in mouse liver in different diets reveals the epigenetic efficacy of cyanidin-3-o-glucoside dietary intake. Int J Mol Sci 2021;22(12). https://doi.org/10.3390/ijms22126503
[85] Cappellini F, Marinelli A, Toccaceli M, Tonelli C, Petroni K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. Front Plant Sci 2021;12. https://doi.org/10.3389/fpls.2021.748049
[86] Hsieh C-J, Kuo P-L, Hsu Y-C, Huang Y-F, Tsai E-M, Hsu Y-L. Arctigenin, a dietary phytoestrogen, induces apoptosis of estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic Biol Med 2014:67159-70. https://doi.org/10.1016/j. freeradbiomed.2013.10.004
[87] Cui Y, Lu C, Liu L, Sun D, Yao N, Tan S, Bai S, Ma X. Reactivation of methylation-silenced tumor suppressor gene p16INK4a by nordihydroguaiaretic acid and its implication in G1 cell cycle arrest. Life Sci 2008;82:247-55. https://doi.org/10.1016/j.lfs.2007.11.013
[88] Jiang A, Wang X, Shan X, Li Y, Wang P, Jiang P, Feng Q. Curcumin Reactivates Silenced Tumor Suppressor Gene RARβ by Reducing DNA Methylation. Phyther Res 2015;29:1237-45. https://doi.org/10.1002/ptr.5373
[89] Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, Padamati J, Chandra R, Chidambaram SB, Sakharkar MK. Benefits of curcumin in brain disorders. BioFactors 2019;45:666-89. https://doi.org/10.1002/biof.1533
[90] Meeran SM, Patel SN, Tollefsbol TO. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS One 2010;5(7). https://doi.org/10.1371/journal.pone.0011457
[91] Myzak MC, Dashwood WM, Orner GA, Ho E, Dashwood RH. Sulforaphane inhibits histone deacetylase in vivo and suppresses tumorigenesis in Apc min mice. FASEB J 2006;20:506-8. https://doi.org/10.1096/fj.05-4785fje
[92] Myzak MC, Karplus PA, Chung FL, Dashwood RH. A novel mechanism of chemoprotection by sulforaphane: Inhibition of histone deacetylase. Cancer Res 2004;64:5767-74. https://doi.org/10.1158/0008-5472.CAN-04-1326
[93] Wong CP, Hsu A, Buchanan A, Palomera-Sanchez Z, Beaver LM, Houseman EA, Williams DE, Dashwood RH, Ho E. Effects of sulforaphane and 3,3′-diindolylmethane on genomewide promoter methylation in normal prostate epithelial cells and prostate cancer cells. PLoS One 2014;9(1). https://doi.org/10.1371/journal.pone.0086787
[94] Schepici G, Bramanti P, Mazzon E. Efficacy of sulforaphane in neurodegenerative diseases. Int J Mol Sci 2020;21:1-26. https://doi.org/10.3390/ijms21228637
[95] Zhao F, Zhang J, Chang N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. Eur J Pharmacol 2018;824:1-10. https://doi.org/10.1016/j. ejphar.2018.01.046
[96] Caradonna F, Consiglio O, Luparello C, Gentile C. Science and healthy meals in the world: Nutritional epigenomics and nutrigenetics of the mediterranean diet. Nutrients 2020;12:1-23. https://doi.org/10.3390/nu12061748
[97] Mansouri N, Alivand MR, Bayat S, Khaniani MS, Derakhshan SM. The hopeful anticancer role of oleuropein in breast cancer through histone deacetylase modulation. J Cell Biochem 2019;120:17042-9. https://doi.org/10.1002/jcb.28965