Abstract
Introduction. Directly or indirectly, COVID-19 have impacted the reporting of notifiable communicable diseases. Since the beginning of the pandemic and the introduction of COVID-19-related public health measures, notifications for most notifiable diseases have declined when compared to previous years. In this study, we aim to quantify the changes in the incidences of notifiable infectious diseases with different transmission modes before, during and after the COVID-19 pandemic in Siracusa Local Health Authority, Italy.
Methods. We collected and analysed the infectious disease notifications made in two different three-years periods, 2017-2019 and 2020-2022 in Siracusa Local Health Authority, Italy.
Results. The total number of notifications significantly decreased by 69.3% in the pandemic period compared to the pre-pandemic one, with the highest reduction of air-borne transmission diseases (-86.5%), followed by food-borne diseases (-68.2%) and sexually transmitted diseases (-39.3%). Conversely, an increase in number of notifications was found only for legionellosis, while an increase trend, but without any statistical significance, was found for food poisoning, syphilis, typhoid and paratyphoid fever.
Conclusions. The COVID-19 pandemic had the potential to influence communicable disease reporting at multiple points. While the effects could vary considerably, the results would be expected to reduce the number and the detection of notifiable cases. Included would be changes in exposures, diagnostic testing, reporting to public health agencies, and public health investigations.
References
‘World Health Organization (WHO). Pulse survey on continuity of essential health services during the COVID-19 pandemic: interim report, 27 August 2020 Geneva: WHO; 2020.’ Accessed: Jan. 30, 2024. [Online]. Available: https://www.who.int/publications/i/item/ WHO-2019-nCoV-EHS_continuity-survey-2020.1
‘World Health Organization (WHO). The impact of the COVID-19 pandemic on noncommunicable disease resources and services: results of a rapid assessment. Geneva: WHO; 2020.’ Accessed: Jan. 30, 2024. [Online]. Available: https://www.who.int/publications/i/ item/9789240010291
‘World Health Organization (WHO). COVID-19 continues to disrupt essential health services in 90% of countries. Geneva: WHO; 2021.’ Accessed: Jan. 30, 2024. [Online]. Available: https://www.who.int/news/ item/23-04-2021-covid-19-continues-to-disrupt-essentialhealth- services-in-90-of-countries
K.-B. Oh, T. M. Doherty, V. Vetter, and P. Bonanni, ‘Lifting non-pharmaceutical interventions following the COVID-19 pandemic – the quiet before the storm?’, Expert Rev Vaccines, vol. 21, no. 11, pp. 1541–1553, Nov. 2022, doi: 10.1080/14760584.2022.2117693.
S. Mader and T. Rüttenauer, ‘The Effects of Non-pharmaceutical Interventions on COVID-19 Mortality: A Generalized Synthetic Control Approach Across 169 Countries’, Front Public Health, vol. 10, Apr. 2022, doi: 10.3389/fpubh.2022.820642.
K.-B. Oh, T. M. Doherty, V. Vetter, and P. Bonanni, ‘Lifting non-pharmaceutical interventions following the COVID-19 pandemic – the quiet before the storm?’, Expert Rev Vaccines, vol. 21, no. 11, pp. 1541–1553, Nov. 2022, doi: 10.1080/14760584.2022.2117693.
A. S. Sacri, G. De Serres, C. Quach, N. Boulianne, L. Valiquette, and D. M. Skowronski, ‘Transmission of Acute Gastroenteritis and Respiratory Illness From Children to Parents’, Pediatric Infectious Disease Journal, vol. 33, no. 6, pp. 583–588, Jun. 2014, doi: 10.1097/INF.0000000000000220.
D.-Y. Oh et al., ‘Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January - September 2020: Analysis of national surveillance data’, The Lancet Regional Health - Europe, vol. 6, p. 100112, Jul. 2021, doi: 10.1016/j.lanepe.2021.100112.
N. Noah, ‘Surveillance of Infectious Diseases’, in Encyclopedia of Virology, Elsevier, 2021, pp. 247–255. doi: 10.1016/B978-0-12-814515-9.00068-0.
Ministero della Salute. Decreto Ministeriale 15 dicembre 1990-Sistema informativo delle malattie infettive e diffusive. 1990. Accessed: Nov. 20, 2023. [Online]. Available: https://www.esteri.it/mae/resource/doc/2020/03/decreto_9_marzoeng.pdf
‘Il sistema di sorveglianza routinario per le malattie infettive (Sistema informativo malattie infettive, Simi)’, Accessed: Nov. 20, 2023. [Online]. Available: https://www.epicentro.iss.it/infettive/sorveglianza
‘Contarino F, Di Pietro E, Randazzo C, Bella F, Contrino ML. Effectiveness of a vaccine recovery plan after the COVID-19 pandemic in the Siracusa Local Health Authority, Italy. Results of one year follow-up. J Prev Med Hyg 2023;64:E289 E297. https://doi.org/10.15167/2421-4248/jpmh2023.64.3.3001’.
‘Contarino F, Di Pietro E, Bella F, Randazzo C, Contrino ML. Childhood immunization coverage during the COVID-19 pandemic in the province of Siracusa, Italy. J Prev Med Hyg 2022;63:E513-E519. https://doi.org/10.15167/2421-4248/jpmh2022.63.4.2587’.
‘Istituto Superiore di Sanità. Infectious diseases department’. Accessed: Jan. 29, 2024. [Online]. Available: https://www.iss.it/web/iss-en/infectious-diseases
: ‘European Centre for Disease Prevention and Control. Measles. In: ECDC. Annual epidemiological report for 2019. Stockholm: ECDC; 2020.’.
Ministero della Salute. Conversione in legge, con modificazioni, del decreto-legge 7 giugno 2017, n. 73, recante disposizioni urgenti in materia di prevenzione vaccinale. 2017. Available at: https:// www.trovanorme.salute.gov.it/norme/dettaglioAtto?id=60201. Accessed: Jan. 28, 2024. [Online]. Available: https://www.trovanorme.salute.gov.it/norme/dettaglioAtto?id=60201
‘Filia A, Bella A, Del Manso M, Baggieri M, Marchi A, Bucci P, Magurano F, Nicoletti L, Rota MC. Morbillo & Rosolia News, N. 58 Gennaio 2020 http://www.epicentro.iss.it/problemi/morbillo/bollettino.asp ’.
‘Istituto Superiore di Sanità (ISS). Rapporto della sorveglianza integrata dell’influenza. 2021. Available at: https://www.epicentro. iss.it/influenza/flunews20-21’. Accessed: Jan. 28, 2024. [Online]. Available: https://www.epicentro.iss.it/influenza/flunews20-21
S. J. Siegel, A. M. Roche, and J. N. Weiser, ‘Influenza Promotes Pneumococcal Growth during Coinfection by Providing Host Sialylated Substrates as a Nutrient Source’, Cell Host Microbe, vol. 16, no. 1, pp. 55–67, Jul. 2014, doi: 10.1016/j.chom.2014.06.005.
L. Akil and H. A. Ahmad, ‘Socioeconomic impacts of COVID-19 pandemic on foodborne illnesses in the United States’, Eur J Environ Public Health, vol. 7, no. 2, p. em0128, Apr. 2023, doi: 10.29333/ejeph/12585.
N. Görür and Z. Topalcengiz, ‘Food safety knowledge, hygiene practices, and eating attitudes of academics and university students during the coronavirus ( COVID ‐19) pandemic in Turkey’, J Food Saf, vol. 41, no. 5, Oct. 2021, doi: 10.1111/jfs.12926.
T. Ukai, K. Kakimoto, T. Kawahata, T. Miyama, N. Iritani, and K. Motomura, ‘Resurgence of syphilis in 2022 amongst heterosexual men and women in Osaka, Japan’, Clinical Microbiology and Infection, vol. 29, no. 3, pp. 396–397, Mar. 2023, doi: 10.1016/j.cmi.2022.11.010.
E. H. Amerson, H. B. Castillo Valladares, and K. S. Leslie, ‘Resurgence of Syphilis in the US—USPSTF Reaffirms Screening Guidelines’, JAMA Dermatol, vol. 158, no. 11, p. 1241, Nov. 2022, doi: 10.1001/jamadermatol.2022.3499.
M. Delaš Aždajić, I. Bešlić, A. Gašić, N. Ferara, L. Pedić, and L. Lugović-Mihić, ‘Increased Scabies Incidence at the Beginning of the 21st Century: What Do Reports from Europe and the World Show?’, Life, vol. 12, no. 10, p. 1598, Oct. 2022, doi: 10.3390/life12101598.
B. van Deursen et al., ‘Increasing incidence of reported scabies infestations in the Netherlands, 2011–2021’, PLoS One, vol. 17, no. 6, p. e0268865, Jun. 2022, doi: 10.1371/journal.pone.0268865.
M. Delaš Aždajić, I. Bešlić, A. Gašić, N. Ferara, L. Pedić, and L. Lugović-Mihić, ‘Increased Scabies Incidence at the Beginning of the 21st Century: What Do Reports from Europe and the World Show?’, Life, vol. 12, no. 10, p. 1598, Oct. 2022, doi: 10.3390/life12101598.
L. Redondo-Bravo et al., ‘Scabies in Spain? A comprehensive epidemiological picture’, PLoS One, vol. 16, no. 11, p. e0258780, Nov. 2021, doi: 10.1371/journal.pone.0258780.
‘https://www.theguardian.com/society/2024/jan/01/doctors-report-nightmare-surge-in-scabies-across-uk’.
‘Rota MC, Caporali MG, Bella A, Scaturro M, Giannitelli S, Ricci ML. I risultati del sistema di sorveglianza della legionellosi nel 2021. Boll Epidemiol Naz 2022;3(2):30-37. Errata corrige in: Rota MC, Caporali MG, Bella A, Scaturro M, Giannitelli S, Ricci ML. I risultati del sistema di sorveglianza della legionellosi nel 2021. Boll Epidemiol Naz 2022;3(2):30-37. DOI: 10.53225/BEN_047’.
‘Rota MC, Caporali MG, Giannitelli S, Urciuoli R, Scaturro M, Ricci ML. I risultati del sistema di sorveglianza della legionellosi nel 2021. Boll Epidemiol Naz 2023;4(1):25-32. ’.
‘European Centre for Disease Prevention and Control. Legionnaires’ disease. In: ECDC. Annual Epidemiological Report for 2021. Stockholm: ECDC; 2023.’ Accessed: Feb. 02, 2024. [Online]. Available: https://www.ecdc.europa.eu/sites/default/files/documents/legionnaires-disease-annual-epidemiological-report-2021.pdf
J. M. Kunz, E. Hannapel, P. Vander Kelen, J. Hils, E. R. Hoover, and C. Edens, ‘Effects of the COVID-19 Pandemic on Legionella Water Management Program Performance across a United States Lodging Organization’, Int J Environ Res Public Health, vol. 20, no. 19, p. 6885, Oct. 2023, doi: 10.3390/ijerph20196885.
‘Legionnaires’disease: lockdown risks and reopening safely’.
B. Chen et al., ‘Changes in Incidence of Notifiable Infectious Diseases in China Under the Prevention and Control Measures of COVID-19’, Front Public Health, vol. 9, Oct. 2021, doi: 10.3389/fpubh.2021.728768.
M.-J. Geng et al., ‘Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic’, Nat Commun, vol. 12, no. 1, p. 6923, Nov. 2021, doi: 10.1038/s41467-021-27292-7.
A. Ullrich et al., ‘Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of national surveillance data during week 1–2016 – week 32–2020’, The Lancet Regional Health - Europe, vol. 6, p. 100103, Jul. 2021, doi: 10.1016/j.lanepe.2021.100103.
A. Sohail, A. C. Cheng, S. L. McGuinness, and K. Leder, ‘The epidemiology of notifiable diseases in Australia and the impact of the COVID-19 pandemic, 2012–2022’, BMC Global and Public Health, vol. 2, no. 1, p. 1, Jan. 2024, doi: 10.1186/s44263-023-00029-y.
M. Redlberger-Fritz, M. Kundi, S. W. Aberle, and E. Puchhammer-Stöckl, ‘Significant impact of nationwide SARS-CoV-2 lockdown measures on the circulation of other respiratory virus infections in Austria’, Journal of Clinical Virology, vol. 137, p. 104795, Apr. 2021, doi: 10.1016/j.jcv.2021.104795.
K. Nash et al., ‘Impact of national COVID-19 restrictions on incidence of notifiable communicable diseases in England: an interrupted time series analysis’, BMC Public Health, vol. 22, no. 1, p. 2318, Dec. 2022, doi: 10.1186/s12889-022-14796-0.
H. Li et al., ‘Comparison of 19 major infectious diseases during COVID-19 epidemic and previous years in Zhejiang, implications for prevention measures’, BMC Infect Dis, vol. 22, no. 1, p. 296, Dec. 2022, doi: 10.1186/s12879-022-07301-w.
S. van de Berg, T. Charles, A. Dörre, K. Katz, and S. Böhm, ‘Epidemiology of common infectious diseases before and during the COVID-19 pandemic in Bavaria, Germany, 2016 to 2021: an analysis of routine surveillance data’, Eurosurveillance, vol. 28, no. 41, Oct. 2023, doi: 10.2807/1560-7917.ES.2023.28.41.2300030.
L. J. Hayes, H. Uri, D. Bojkova, J. Cinatl, M. N. Wass, and M. Michaelis, ‘Impact of the COVID‐19 pandemic on the circulation of other pathogens in England’, J Med Virol, vol. 95, no. 1, Jan. 2023, doi: 10.1002/jmv.28401.
A. Komori, H. Mori, and T. Naito, ‘The impact of the COVID-19 pandemic on other infections differs by their route of transmission: A retrospective, observational study in Japan’, Journal of Infection and Chemotherapy, vol. 28, no. 12, pp. 1700–1703, Dec. 2022, doi: 10.1016/j.jiac.2022.08.022.
K. Hirae, T. Hoshina, and H. Koga, ‘Impact of the COVID-19 pandemic on the epidemiology of other communicable diseases in Japan’, International Journal of Infectious Diseases, vol. 128, pp. 265–271, Mar. 2023, doi: 10.1016/j.ijid.2023.01.013.
‘Facciolà A, Laganà A, Genovese G, Romeo B, Sidoti S, D’Andrea G, Raco C, Visalli G, Di Pietro A. Impact of the COVID-19 pandemic on the infectious disease epidemiology. J Prev Med Hyg 2023;64:E274 E282. https://doi.org/10.15167/2421-4248/ jpmh2023.64.3.2904’.
G. A. Rotulo et al., ‘The impact of COVID-19 lockdown on infectious diseases epidemiology: The experience of a tertiary Italian Pediatric Emergency Department’, Am J Emerg Med, vol. 43, pp. 115–117, May 2021, doi: 10.1016/j.ajem.2021.01.065.
G. Facchin, A. Bella, M. Del Manso, M. C. Rota, and A. Filia, ‘Decline in reported measles cases in Italy in the COVID-19 era, January 2020 – July 2022: The need to prevent a resurgence upon lifting non-pharmaceutical pandemic measures’, Vaccine, vol. 41, no. 7, pp. 1286–1289, Feb. 2023, doi: 10.1016/j.vaccine.2023.01.021.
F. Angoulvant et al., ‘Coronavirus Disease 2019 Pandemic: Impact Caused by School Closure and National Lockdown on Pediatric Visits and Admissions for Viral and Nonviral Infections—a Time Series Analysis’, Clinical Infectious Diseases, vol. 72, no. 2, pp. 319–322, Jan. 2021, doi: 10.1093/cid/ciaa710.
J. Hatoun, E. T. Correa, S. M. A. Donahue, and L. Vernacchio, ‘Social Distancing for COVID-19 and Diagnoses of Other Infectious Diseases in Children’, Pediatrics, vol. 146, no. 4, Oct. 2020, doi: 10.1542/peds.2020-006460.
M. Redlberger-Fritz, M. Kundi, S. W. Aberle, and E. Puchhammer-Stöckl, ‘Significant impact of nationwide SARS-CoV-2 lockdown measures on the circulation of other respiratory virus infections in Austria’, Journal of Clinical Virology, vol. 137, p. 104795, Apr. 2021, doi: 10.1016/j.jcv.2021.104795.
J. Xiao et al., ‘Co-benefits of nonpharmaceutical intervention against COVID-19 on infectious diseases in China: A large population-based observational study’, Lancet Reg Health West Pac, vol. 17, p. 100282, Dec. 2021, doi: 10.1016/j.lanwpc.2021.100282.
C.-C. Lai, S.-Y. Chen, M.-Y. Yen, P.-I. Lee, W.-C. Ko, and P.-R. Hsueh, ‘The impact of the coronavirus disease 2019 epidemic on notifiable infectious diseases in Taiwan: A database analysis’, Travel Med Infect Dis, vol. 40, p. 101997, Mar. 2021, doi: 10.1016/j.tmaid.2021.101997.
A. Bright, A.-J. Glynn-Robinson, S. Kane, R. Wright, and N. Saul, ‘The effect of COVID-19 public health measures on nationally notifiable diseases in Australia: preliminary analysis’, Commun Dis Intell, vol. 44, Nov. 2020, doi: 10.33321/cdi.2020.44.85.
S. G. Sullivan et al., ‘Where has all the influenza gone? The impact of COVID-19 on the circulation of influenza and other respiratory viruses, Australia, March to September 2020’, Eurosurveillance, vol. 25, no. 47, Nov. 2020, doi: 10.2807/1560-7917.ES.2020.25.47.2001847.
C. L. Gibbons et al., ‘Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods’, BMC Public Health, vol. 14, no. 1, p. 147, Dec. 2014, doi: 10.1186/1471-2458-14-147.
C. L. Charlton et al., ‘How To Prepare for the Unexpected: a Public Health Laboratory Response’, Clin Microbiol Rev, vol. 34, no. 3, Jun. 2021, doi: 10.1128/CMR.00183-20.
‘epiTRENS. A Monthly Bulletin on Epidemiology and Public Health Practice in Washington. January 2021 Volume 26, Number 1’. Accessed: Jan. 28, 2024. [Online]. Available: https://doh.wa.gov/sites/default/files/legacy/Documents/5100//420-002-epitrends2021-01.pdf
‘Australian Institute of Health and Welfare (2022) Infectious and communicable diseases, AIHW, Australian Government.’ Accessed: Jan. 28, 2024. [Online]. Available: https://www.aihw.gov.au/reports/australias-health/infectious-and-communicable-diseases
L. Simonsen, J. R. Gog, D. Olson, and C. Viboud, ‘Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems’, Journal of Infectious Diseases, vol. 214, no. suppl 4, pp. S380–S385, Dec. 2016, doi: 10.1093/infdis/jiw376.
N. K. Ibrahim, ‘Epidemiologic surveillance for controlling Covid-19 pandemic: types, challenges and implications’, J Infect Public Health, vol. 13, no. 11, pp. 1630–1638, Nov. 2020, doi: 10.1016/j.jiph.2020.07.019.
S. de Lusignan et al., ‘Emergence of a Novel Coronavirus (COVID-19): Protocol for Extending Surveillance Used by the Royal College of General Practitioners Research and Surveillance Centre and Public Health England’, JMIR Public Health Surveill, vol. 6, no. 2, p. e18606, Apr. 2020, doi: 10.2196/18606.
M. N. Sakib, Z. A. Butt, P. P. Morita, M. Oremus, G. T. Fong, and P. A. Hall, ‘Considerations for an Individual-Level Population Notification System for Pandemic Response: A Review and Prototype’, J Med Internet Res, vol. 22, no. 6, p. e19930, Jun. 2020, doi: 10.2196/19930.
Y. A. Adebisi, A. Rabe, and D. E. Lucero-Prisno III, ‘COVID-19 surveillance systems in 13 African countries’, Health Promot Perspect, vol. 11, no. 4, pp. 382–392, Dec. 2021, doi: 10.34172/hpp.2021.49.
‘Future surveillance for epidemic and pandemic diseases: a 2023 perspective. Geneva: World Health Organization; 2023.’ Accessed: Feb. 07, 2024. [Online]. Available: https://iris.who.int/bitstream/handle/10665/374992/9789240080959-eng.pdf?sequence=1
‘World Health Organization. Rapid review of WHO COVID‐19 surveillance: External review, 27 October 2021. Geneva: World Health Organization; 2021.’