Disrtibution of blaTEM, blaSHV and blaCTX-M genes among ESBL-producing P. aeruginosa isolated from Qazvin and Tehran hospitals, Iran
PDF

Keywords

Pseudomonas aeruginosa
ESBL
blaTEM
blaSHV
blaCTX-M

Abstract

Background. Pseudomonas aeruginosa is as an important opportunistic human pathogen, which  is associated with several clinical infections that are usually difficult to treat because of resistance to multiple antimicrobials. The production of extended-spectrum Ã-lactamases (ESBLs) is an important mechanism of Ã-lactam resistance. The aims of this study were to determine the prevalence of ESBLs, antimicroboial susceptibility, and to detect the blaTEM, blaSHV, and blaCTX-M genes.

Methods. In this study, during March 2013  to December 2014, 266 P. aeruginosa isolates were collected from patients admitted to educational hospitals of Qazvin and Tehran, Iran. All isolates were initially screened for ESBL production by disk diffusion method and were further confirmed using a combined disk method. Antimicrobial susceptibility of ESBL-producing isolates was determined by standard disk diffusion method. PCR and sequencing techniques were employed for detection of blaTEM, blaSHV, and blaCTX-M genes. 

Results.  In total, 262 (98.5%) P. aeruginosa isolates were non-susceptible to the used extended spectrum cephalosporins, among those 75(28.6%)  isolates were ESBL producers. Fifty nine (78.7%) of ESBL-producing isolates showed multidrug resistance pattern. Of 75 ESBL-positive isolates, the blaTEM-1 (26.7%) was the most common gene, followed by blaCTX-M-15 (17.3%), blaSHV-1 (6.7%), and blaSHV-12 (4%) either alone or in combination.

Conclusions. The results of this study showed the notable prevalence of ESBLs among the clinical isolates of P. aeruginosa in Iran, indicating the urgency for
implementation of appropriate follow-up measures for infection control and proper administration of antimicrobial agents in our medical settings.

https://doi.org/10.15167/2421-4248/jpmh2017.58.2.561
PDF

References

Jefferies JMC, Cooper T, Yam T, et al. Pseudomonas aeruginosa outbreaks in the neonatal intensive care unit â a systematic review of risk factors and environmental sources. J Med Microbiol 2012; 61: 1052-61.

Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009; 22: 582-610.

Church D, Elsayed S, Reid O, et al. Burn wound infections. Clin Microbiol Rev 2006; 19: 403-34.

Sorde R, Pahissa A, Rello J. Management of refractory Pseudomonas aeruginosa infection in cystic fibrosis. Infect Drug Resist 2011; 4: 31-41.

Strateva T, Yordanov D. Pseudomonas aeruginosa â a phenomenon of bacterial resistance. J Med Microbiol 2009; 58: 1133-48.

Rawat D, Nair D. Extended-spectrum beta-lactamases in Gram Negative Bacteria. J Glob Infect Dis 2010; 2: 263-74.

Hirsch EB, Tam VH. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res 2010; 10: 441-51.

Koenig SM, Truwit JD. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev 2006; 19: 637-57.

Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 2005; 18: 657-86.

Bradford PA. Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14: 933-51.

Adeyankinnu FA, Motayo BO, Akinduti A, et al. A multicenter study of beta-lactamase resistant Escherichia coli and Klebsiella pneumoniae reveals high level chromosome mediated extended spectrum β-lactamase resistance in Ogun state, Nigeria. Interdiscip Perspect Infect Dis 2014; 2014: 7.

Kaur M, Aggarwal A. Occurrence of the CTX-M, SHV and the TEM genes among the extended spectrum beta-lactamase producing isolates of Enterobacteriaceae in a tertiary care hospital of north India. J Clin Diagn Res 2013; 7: 642-5.

Roschanski N, Fischer J, Guerra B, et al. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS ONE 2014; 9: e100956.

Pitout JD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J Clin Microbiol 2004; 42: 5715-21.

Garrec H, Drieux-Rouzet L, Golmard JL, et al. Comparison of nine phenotypic methods for detection of extended-spectrum beta-lactamase production by Enterobacteriaceae. J Clin Microbiol 2011; 49: 1048-57.

Dhillon RH-P, Clark J. ESBLs: A Clear and Present Danger? Crit Care Res Pract 2012;2012: 625170.

Mahon CR, Lehman DC, Manuselis G. Textbook of diagnostic microbiology. 4th ed. Maryland Heights, Mo.Saunders/Elsevier; 2011.

Jiang X, Zhang Z, Li M, et al. Detection of extended-spectrum beta-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006; 50: 2990-5.

Naiemi NA, Duim B, Savelkoul PH, et al. Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J Clin Microbiol 2005; 43: 4862-4.

Ben Achour N, Mercuri PS, Power P, et al. First detection of CTX-M-28 in a Tunisian hospital from a cefotaxime-resistant Klebsiella pneumoniae strain. Pathol Biol (Paris) 2009; 57: 343-8.

Schwaber MJ, Navon-Venezia S, Chmelnitsky I, et al. Utility of the VITEK 2 Advanced Expert System for identification of extended-spectrum beta-lactamase production in Enterobacter spp. J Clin Microbiol 2006; 44: 241-3.

Anvarinejad M, Japoni A, Rafaatpour N, et al. Burn patients infected with metallo-beta-lactamase-producing Pseudomonas aeruginosa: multidrug-resistant strains. Arch Trauma Res 2014; 3: e18182.

Sydnor ER, Perl TM. Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 2011; 24: 141-73.

Dalhoff A. Global Fluoroquinolone Resistance Epidemiology and Implictions for Clinical Use. Interdiscip Perspect Infect Dis. 2012; 2012: 37.

Mirsalehian A, Feizabadi M, Nakhjavani FA, et al. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns. 2010; 36: 70-4.

Shakibaie M SF, Hashemi A, Adeli S. Detection of TEM, SHV and PER type extended-spectrum beta-lactamase genes among clinical strains of Pseudomonas aeroginosa isolated from burnt patients Shafa- hospital, Kerman, Iran. Iran J Basic Med Sci 2008; 11: 104-11.

Begum S, Salam MA, Alam KF, et al. Detection of extended spectrum beta-lactamase in Pseudomonas spp. isolated from two tertiary care hospitals in Bangladesh. BMC Research Notes 2013; 6: 7.

S S, Reddy AS, S S, et al. Resistance pattern of Pseudomonas aeruginosa in a tertiary care hospital of Kanchipuram, Tamilnadu, India. J Clin Diagn Res. 2014; 8: 30-2.

Zafer MM, Al-Agamy MH, El-Mahallawy HA, et al. Antimicrobial resistance pattern and their beta-lactamase encoding genes among Pseudomonas aeruginosa strains isolated from cancer patients. Biomed Res Int 2014; 2014: 8.

Umadevi S, Joseph NM, Kumari K, et al. Detection of extended spectrum beta lactamases, ampc beta lactamases and metallobetalactamases in clinical isolates of ceftazidime resistant Pseudomonas aeruginosa. Braz J Microbiol 2011; 42: 1284-8.

Woodford N, Zhang J, Kaufmann ME, et al. Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum beta-lactamases in the United Kingdom. J Antimicrob Chemother 2008; 62: 1265-8.

Fallah F, Borhan RS, Hashemi A. Detection of bla(IMP) and bla(VIM) metallo-beta-lactamases genes among Pseudomonas aeruginosa strains. Int J Burns Trauma 2013; 3: 122-4.

Hakemi Vala M, Hallajzadeh M, Hashemi A, et al. Detection of Ambler class A, B and D Ã-lactamases among Pseudomonas aeruginosa and Acinetobacter baumannii clinical isolates from burn patients. Ann Burns Fire Disasters 2014; 27: 8-13.

Santanirand P, Malathum K, Chadlane T, et al. Distribution of carbapenem resistant Acinetobacter baumannii and Pseudomonas aeruginosa and ESBL-producing organisms colonization among intensive care patients. BMC Proceedings 2011; 5: 293.

Ramazanzadeh R, Chitsaz M, Bahmani N. Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing bacteria in intensive care units of Sanandaj general hospitals (Kurdistan, Iran). Chemotherapy 2009; 55: 287-92.

Shahcheraghi F, Nikbin VS, Feizabadi MM. Prevalence of ESBLs genes among multidrug-resistant isolates of Pseudomonas aeruginosa isolated from patients in Tehran. Microb Drug Resist 2009; 15: 37-9.

Uemura S, Yokota S, Mizuno H, et al. Acquisition of a transposon encoding extended-spectrum beta-lactamase SHV-12 by Pseudomonas aeruginosa isolates during the clinical course of a burn patient. Antimicrob Agents Chemother 2010; 54: 3956-9.

Polotto M, Casella T, de Lucca Oliveira MG, et al. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and blaGES-5, bla IMP-1 and blaSPM-1 causing infections in Brazilian tertiary-care hospital. BMC Infect Dis 2012; 12: 176.