Polyphenols and Lactobacillus reuteri in oral health


Mediterranean diet
Oral health
Lactobacillus reuteri


Oral health is one of the necessary preludes to the overall quality of life. Several medical procedures and therapies are available to treat oral diseases in general and periodontal diseases in particular, yet caries, periodontitis, oral cancer, and oral infections remain a global concern. Natural molecules, with their anti-oxidant, anti-inflammatory, and anti-microbic properties, are one of the main sources of oral health and dental health care, and should be supplemented to exploit their beneficial effects. A possible way to improve the intake of these molecules is adhering to a diet that is rich in fruits, vegetables, and probiotics, which has many beneficial properties and can improve overall health and wellbeing. The Mediterranean diet, in particular, provides several beneficial natural molecules, mainly because of the precious nutrients contained in its typical ingredients, mainly plant-based (olives, wine, citrus fruits, and many more). Its beneficial effects on several diseases and in increasing the overall wellbeing of the population are currently being studied by physicians. Among its nutrients, polyphenols (including, among other molecules, lignans, tannins, and flavonoids) seem to be of outmost importance: several studies showed their anticariogenic properties, as well as their effects in decreasing the incidence of non-communicable diseases. Therefore, plant-derived molecules – such as polyphenols – and probiotics – such as Lactobacillus reuteri – have shown a significant potential in treating and curing oral diseases, either alone or in combination, owing to their antioxidant and antimicrobial properties, respectively.



[1] Di Meo F, Valentino A, Petillo O, Peluso G, Filosa S, Crispi S. Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020;21:2564. https://doi.org/10.3390/ijms21072564
[2] Santos‐Buelga C, Scalbert A. Proanthocyanidins and tannin‐like compounds–nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric 2000;80:1094-117. https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1094:AID-JSFA569>3.0.CO;2-1
[3] Cory H, Passarelli S, Szeto J, Tamez M, Mattei J. The role of polyphenols in human health and food systems: a mini-review. Front Nutr 2018;5:87. https://doi.org/10.3389/fnut.2018.00087
[4] Lafay S, Gil-Izquierdo A. Bioavailability of phenolic acids. Phytochem Rev 2008;7:301-11. https://doi.org/10.1007/s11101-007-9077-x
[5] Román GC, Jackson RE, Gadhia R, Román AN, Reis J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev Neurol (Paris) 2019;175:724-41. https://doi.org/10.1016/j.neurol.2019.08.005
[6] Sohrab G, Hosseinpour-Niazi S, Hejazi J, Yuzbashian E, Mirmiran P, Azizi F. Dietary polyphenols and metabolic syndrome among Iranian adults. Int J Food Sci Nutr 2013;64:661-7. https://doi.org/10.3109/09637486.2013.787397
[7] Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 2016;21:1374. https://doi.org/10.3390/molecules21101374
[8] Alam MA. Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action. Front Nutr 2019;6:121. https://doi.org/10.3389/fnut.2019.00121
[9] Salomone F, Godos J, Zelber‐Sagi S. Natural antioxidants for non‐alcoholic fatty liver disease: molecular targets and clinical perspectives. Liver Int 2016;36:5-20. https://doi.org/10.1111/liv.12975
[10] Naveen S, Siddalingaswamy M, Singsit D, Khanum F. Anti‐depressive effect of polyphenols and omega‐3 fatty acid from pomegranate peel and flax seed in mice exposed to chronic mild stress. Psychiatry Clin Neurosci 2013;67:501-8. https://doi.org/10.1111/pcn.12100
[11] Godos J, Ferri R, Castellano S, Angelino D, Mena P, Del Rio D, Caraci F, Galvano F, Grosso G. Specific dietary (poly) phenols are associated with sleep quality in a cohort of Italian adults. Nutrients 2020;12:1226. https://doi.org/10.3390/nu12051226
[12] Lima GP, Vianello F, Corrêa CR, Campos RA, Borguini MG. Polyphenols in fruits and vegetables and its effect on human health. Food Nutr Sci 2014:1065-82. https://doi.org/10.4236/fns.2014.511117
[13] Segura Campos MR. Bioactive compounds, 1st Edition. Woodhead Publishing 2019. https://doi.org/10.1016/C2017-0-02265-6
[14] Kiani AK, Falsini B, Ziccardi L, Gusson E, Mangialavori D, Allegrini F, Colao E, Bertelli M. Flavonoid supplements increase neurotrophin activity to modulate inflammation in retinal genetic diseases. Acta Biomed 2020;91:e2020014. https://doi.org/10.23750/abm.v91i13-S.10683
[15] Huntley AL. The health benefits of berry flavonoids for menopausal women: cardiovascular disease, cancer and cognition. Maturitas 2009;63:297-301. https://doi.org/10.1016/j.maturitas.2009.05.005
[16] Błaszczyk A, Sady S, Sielicka M. The stilbene profile in edible berries. Phytochem Rev 2019;18:37-67. https://doi.org/10.1007/s11101-018-9580-2
[17] Bertelli AA, Das DK. Grapes, wines, resveratrol, and heart health. Journal of cardiovascular pharmacology 2009;54:468-76. https://doi.org/10.1097/FJC.0b013e3181bfaff3
[18] Perrone D, Fuggetta MP, Ardito F, Cottarelli A, De Filippis A, Ravagnan G, De Maria S, Lo Muzio L. Resveratrol (3, 5, 4’-trihydroxystilbene) and its properties in oral diseases. Exp Ther Med 2017;14:3-9. https://doi.org/10.3892/etm.2017.4472
[19] Rauf A, Imran M, Suleria HA, Ahmad B, Peters DG, Mubarak MS. A comprehensive review of the health perspectives of resveratrol. Food Funct 2017;8:4284-305. https://doi.org/10.1039/c7fo01300k
[20] Basli A, Belkacem N, Amrani I. Health benefits of phenolic compounds against cancers. Phenolic compounds-biological activity. Available at: https://www.intechopen.com/chapters/54035. Accessed on: 07/07/2022.
[21] Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2009;2:270-8. https://doi.org/10.4161/oxim.2.5.9498
[22] Kumar N, Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol Rep 2019;24:e00370. https://doi.org/10.1016/j.btre.2019.e00370
[23] Labbé D, Provençal M, Lamy S, Boivin D, Gingras D, Béliveau R. The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J Nutr 2009;139:646-52. https://doi.org/10.3945/jn.108.102616
[24] Bae J, Kim N, Shin Y, Kim S-Y, Kim Y-J. Activity of catechins and their applications. Biomed Dermatol 2020;4:8. https://doi.org/10.1186/s41702-020-0057-8
[25] Alam F, Mohammadin K, Shafique Z, Amjad ST, Asad MHHB. Citrus flavonoids as potential therapeutic agents: A review. Phytother Res 2022;36:1417-41. https://doi.org/10.1002/ptr.7261
[26] Özcan Ö, Aldemir O, Karabulut B. Flavones (apigenin, luteolin, chrysin) and their importance for health. Mellifera 2020;20:16-27.
[27] Senft D, Ronai ZE. Adaptive stress responses during tumor metastasis and dormancy. Trends in Cancer 2016;2:429-42. https://doi.org/10.1016/j.trecan.2016.06.004
[28] Saulite L, Jekabsons K, Klavins M, Muceniece R, Riekstina U. Effects of malvidin, cyanidin and delphinidin on human adipose mesenchymal stem cell differentiation into adipocytes, chondrocytes and osteocytes. Phytomedicine 2019;53:86-95. https://doi.org/10.1016/j.phymed.2018.09.029
[29] Schroeter H, Heiss C, Spencer JP, Keen CL, Lupton JR, Schmitz HH. Recommending flavanols and procyanidins for cardiovascular health: current knowledge and future needs. Mol Aspects Med 2010;31:546-57. https://doi.org/10.1016/j. mam.2010.09.008
[30] Kiss AK, Piwowarski JP. Ellagitannins, gallotannins and their metabolites-the contribution to the anti-inflammatory effect of food products and medicinal plants. Curr Med Chem 2018;25:4946-67. https://doi.org/10.2174/09298673236661609 19111559
[31] Kuršvietienė L, Stanevičienė I, Mongirdienė A, Bernatonienė J. Multiplicity of effects and health benefits of resveratrol. Medicina 2016;52:148-55. https://doi.org/10.1016/j. medici.2016.03.003
[32] Martínez L, Ros G, Nieto G. Hydroxytyrosol: Health benefits and use as functional ingredient in meat. Medicines 2018;5:13. https://doi.org/10.3390/medicines5010013
[33] Dhuli K, Ceccarini MR, Precone V, Maltese PE, Bonetti G, Paolacci S, Dautaj A, Guerri G, Marceddu G, Beccari T, Michelini S, Bertelli M. Improvement of quality of life by intake of hydroxytyrosol in patients with lymphedema and association of lymphedema genes with obesity. Eur Rev Med Pharmacol Sci 2021;25:33-42. https://doi.org/10.26355/eurrev_202112_27331
[34] Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salamon R, Renaud S, Breteler MB. Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol 1997;153:185-92.
[35] Di Meo F, Valentino A, Petillo O, Peluso G, Filosa S, Crispi S. Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020;21:2564. https://doi.org/10.3390/ijms21072564
[36] Jiang H, Wang J, Rogers J, Xie J. Brain iron metabolism dysfunction in Parkinson’s Disease. Mol Neurobiol 2017;54:3078-101. https://doi.org/10.1007/s12035-016-9879-1
[37] Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 2016;8:33-42. https://doi.org/10.1016/j.cofs.2016.02.002
[38] Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013;5:3779-827. https://doi.org/10.3390/nu5103779
[39] Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen YM, Li HB. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016;8:515. https://doi.org/10.3390/nu8080515
[40] Fujiki H, Sueoka E, Watanabe T, Suganuma M. Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. J Cancer Prev 2015;20:1-4. https://doi.org/10.15430/JCP.2015.20.1.1
[41] Wang S, Sun Z, Dong S, Liu Y, Liu Y. Molecular interactions between (–)-epigallocatechin gallate analogs and pancreatic lipase. PLoS ONE 2014;9:e111143. https://doi.org/10.1371/journal.pone.0111143
[42] Xiao JB, Hogger P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr Med Chem 2015;22:23-38. https://doi.org/10.2174/092986732166614070 6130807
[43] Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem 2015;172:862-72. https://doi.org/10.1016/j.foodchem.2014.09.144
[44] Kharouf N, Haikel Y, Ball V. Polyphenols in Dental Applications. Bioengineering 2020;7:72. https://doi.org/10.3390/bioengineering7030072
[45] Shavandi A, Bekhit AEA, Saeedi P, Izadifar Z, Bekhit AA, Khademhosseini A. Polyphenol uses in biomaterials engineering. Biomaterials 2018;167:91-106. https://doi.org/10.1016/j.biomaterials.2018.03.018
[46] Al-Ammar A, Drummond JL, Bedran-Russo AK. The use of collagen cross-linking agents to enhance dentin bond strength. J Biomed Mater Res B Appl Biomater 2009;91:419-24. https://doi.org/10.1002/jbm.b.31417
[47] Skopec MM, Hagerman AE, Karasov WH. Do salivary proline-rich proteins counteract dietary hydrolysable tannin in laboratory rats? J Chem Ecol 2004;30:1679-92. https://doi.org/10.1023/b:joec.0000042395.31307.be
[48] Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26:343-56. https://doi.org/10.1016/j. ijantimicag.2005.09.002
[49] Fung DYC, Taylor S, Kahan J. Effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on growth and aflatoxin production of Aspergillus flavus. J Food Saf 1977;1:39-51. https://doi.org/10.1111/j.1745-4565.1977.tb00258.x
[50] Tamba Y, Ohba S, Kubota M, Yoshioka H, Yamazaki M. Single GUV method reveals interaction of tea catechin (-)-epigallocatechin gallate with lipid membranes. Biophys J 2007;92:3178-94. https://doi.org/10.1529/biophysj.106.097105
[51] Galati G, O’Brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic Biol Med 2004;37:287-303. https://doi.org/10.1016/j.freeradbiomed.2004.04.034
[52] Hsu S, Lewis JB, Borke JL, Singh B, Dickinson DP, Caughman GB, Athar M, Drake L, Aiken AC, Huynh CT, Das BR, Osaki T, Schuster GS. Chemopreventive effects of green tea polyphenols correlate with reversible induction of p57 expression. Anticancer Res 2001;21:3743-8.
[53] Khafif A, Schantz SP, Al-Rawi M, Edelstein D, Sacks PG. Green tea regulates cell cycle progression in oral leukoplakia. Head and Neck 1998;20:528-34. https://doi.org/10.1002/(sici)1097-0347(199809)20:6<528::aid-hed7>3.0.co;2-3
[54] Masuda M, Suzui M, Weinstein IB. Effects of Effects of epigallocatechin-3-gallate on growth, epidermal growth factor receptor signaling pathways, gene expression, and chemosensitivity in human head and neck squamous cell carcinoma cell lines. Clin Cancer Res 2001;7:4220-9.
[55] Yang CS, Lambert JD, Sang S. Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch Toxicol 2009;83:11-21. https://doi.org/10.1007/s00204-008-0372-0
[56] De Stefani E, Ronco AL, Mendilaharsu M, Deneo-Pellegrini H. Diet and risk of cancer of the upper aerodigestive tract—II. Nutrients Oral Oncol 1999;35:22-6. https://doi.org/10.1016/S1368-8375(98)00061-X
[57] Rossi M, Garavello W, Talamini R, Negri E, Bosetti C, Dal Maso L, Lagiou P, Tavani A, Polesel J, Barzan L, Ramazzotti V, Franceschi S, La Vecchia C. Flavonoids and the risk of oral and pharyngeal cancer: A case-control study from Italy. Cancer Epidemiol Biomark Prev 2007;16:1621-5. https://doi.org/10.1158/1055-9965.EPI-07-0168
[58] Petti S, Scully C. Polyphenols, oral health and disease: a review. J Dent 2009;37:413-23. https://doi.org/10.1016/j. jdent.2009.02.003
[59] Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 2005;43:5721-32. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
[60] Marsh PD. Dental plaque: biological significance of a biofilm and community life-style. J Clin Periodontol 2005;326:7-15. https://doi.org/10.1111/j.1600-051X.2005.00790.x
[61] Marsh PD. Dental plaque as a microbial biofilm. Caries Res 2004;38:204-11. https://doi.org/10.1159/000077756
[62] Hattori M, KUSUMOTO IT, NAMBA T, ISHIGAMI T, HARA Y. Effect of tea polyphenols on glucan synthesis by glucosyltransferase from Streptococcus mutans. Chem Pharm Bull (Tokyo) 1990;38:717-20. https://doi.org/10.1248/cpb.38.717
[63] Ren Z, Chen L, Li J, Li Y. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity. J Oral Microbiol 2016;8:31095. https://doi.org/10.3402/jom.v8.31095
[64] Smullen J, Koutsou GA, Foster HA, Zumbé A, Storey DM. The antibacterial activity of plant extracts containing polyphenols against Streptococcus mutans. Caries Res. 2007;41:342-9. https://doi.org/10.1159/000104791
[65] Kandra L, Gyémánt G, Zajácz Á, Batta G. Inhibitory effects of tannin on human salivary α-amylase. Biochem Biophys Res Commun 2004;319:1265-71. https://doi.org/10.1016/j. bbrc.2004.05.122
[66] Andújar I, Recio MC, Giner RM, Ríos J. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 2012;2012:906252. https://doi.org/10.1155/2012/906252
[67] Ooshima T, Minami T, Aono W, Izumitani A, Sobue S, Fujiwara T, Kawabata S, Hamada S. Oolong tea polyphenols inhibit experimental dental caries in SPF rats infected with mutatis streptococci. Caries Res 1993;27:124-9. https://doi.org/10.1159/000261529
[68] Lolayekar N, Shanbhag C. Polyphenols and oral health. RSBO 2012;9:74-84.
[69] Sasaki H, Matsumoto M, Tanaka T, Maeda M, Nakai M, Hamada S, Ooshima T. Antibacterial activity of polyphenol components in oolong tea extract against Streptococcus mutans. Caries Res 2004;38:2-8. https://doi.org/10.1159/000073913
[70] Naureen Z, Capodicasa N, Paolacci S, Anpilogov K, Dautaj A, Dhuli K, Camilleri G, Connelly ST, Gasparetto A, Bertelli M. Prevention of the proliferation of oral pathogens due to prolonged mask use based on α-cyclodextrin and hydroxytyrosol mouthwash. Eur Rev Med Pharmacol Sci 2021;25:74-80. https://doi.org/10.26355/eurrev_202112_27336
[71] Paolacci S, Ergoren MC, De Forni D, Manara E, Poddesu B, Cugia G, Dhuli K, Camilleri G, Tuncel G, Kaya Suer H, Sultanoglu N, Sayan M, Dundar M, Beccari T, Ceccarini MR, Gunsel IS, Dautaj A, Sanlidag T, Connelly ST, Tartaglia GM, Bertelli M. In vitro and clinical studies on the efficacy of α-cyclodextrin and hydroxytyrosol against SARS-CoV-2 infection. Eur Rev Med Pharmacol Sci 2021;25:81-9. https://doi.org/10.26355/eurrev_202112_27337
[72] Paolacci S, Kiani AK, Shree P, Tripathi D, Tripathi YB, Tripathi P, Tartaglia GM, Farronato M, Farronato G, Connelly ST, Ceccarini MR, Coatto M, Ergoren MC, Sanlidag T, Dautaj A, Bertelli M. Scoping review on the role and interactions of hydroxytyrosol and alpha-cyclodextrin in lipid-raft-mediated endocytosis of SARS-CoV-2 and bioinformatic molecular docking studies.. Eur Rev Med Pharmacol Sci 2021;25:90-100. https://doi.org/10.26355/eurrev_202112_27338
[73] Ergoren MC, Paolacci S, Manara E, Dautaj A, Dhuli K, Anpilogov K, Camilleri G, Suer HK, Sayan M, Tuncel G, Sultanoglu N, Farronato M, Tartaglia GM, Dundar M, Farronato G, Gunsel IS, Bertelli M, Sanlidag T. A pilot study on the preventative potential of alpha-cyclodextrin and hydroxytyrosol against SARS-CoV-2 transmission. Acta Biomed 2020;91(13-S):e2020022. https://doi.org/10.23750/abm.v91i13-S.10817
[74] Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol 2018;9:757. https://doi.org/10.3389/fmicb.2018.00757
[75] Greifová G, Májeková H, Greif G, Body P, Greifová M, Dubničková M. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Microbiol 2017;62:515-24. https://doi.org/10.1007/s12223-017-0524-9
[76] Thomas CM, Saulnier DM, Spinler JK, Hemarajata P, Gao C, Jones SE, Grimm A, Balderas MA, Burstein MD, Morra C, Roeth D, Kalkum M, Versalovic J. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. Microbiologyopen 2016;5:802-18. https://doi.org/10.1002/mbo3.371
[77] Romani Vestman N, Chen T, Lif Holgerson P, Öhman C, Johansson I. Oral Microbiota shift after 12-week supplementation with Lactobacillus reuteri DSM 17938 and PTA 5289; a randomized control trial. PLoS One 2015;10:e0125812. https://doi.org/10.1371/journal.pone.0125812
[78] Iniesta M, Herrera D, Montero E, Zurbriggen M, Matos AR, Marín MJ, Sánchez-Beltrán MC, Llama-Palacio A, Sanz M. Probiotic effects of orally administered Lactobacillus reuteri-containing tablets on the subgingival and salivary microbiota in patients with gingivitis. A randomized clinical trial. J Clin Periodontol 2012;39:736-44. https://doi.org/10.1111/j.1600-051X.2012.01914.x
[79] Teughels W, Durukan A, Ozcelik O, Pauwels M, Quirynen M, Haytac MC. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol 2013;40:1025-35. https://doi.org/10.1111/jcpe.12155
[80] Lacroix C. Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation, 1st Edition. Zurich ET: Woodhead Publishing 2011.
[81] Jansen PM, Abdelbary MM, Conrads G. A concerted probiotic activity to inhibit periodontitis-associated bacteria. Plos One 2021;16:e0248308. https://doi.org/10.1371/journal. pone.0248308
[82] Geraldo BM, Batalha MN, Milhan NV, Rossoni RD, Scorzoni L, Anbinder AL. Heat‐killed Lactobacillus reuteri and cell‐free culture supernatant have similar effects to viable probiotics during interaction with Porphyromonas gingivalis. J Periodontal Res 2020;55:215-20. https://doi.org/10.1111/jre.12704
[83] Santos TA, Scorzoni L, Correia R, Junqueira JC, Anbinder AL. Interaction between Lactobacillus reuteri and periodontopathogenic bacteria using in vitro and in vivo (G. mellonella) approaches. Pathog Dis 2020;78:ftaa044. https://doi.org/10.1093/femspd/ftaa044
[84] Moman R, O’Neill CA, Ledder RG, Cheesapcharoen T, McBain AJ. Mitigation of the toxic effects of periodontal pathogens by candidate probiotics in oral keratinocytes, and in an invertebrate model. Front Microbiol 2020;11:999. https://doi.org/10.3389/fmicb.2020.00999
[85] Kšonžeková P, Bystrický P, Vlčková S, Pätoprstý V, Pulzová L, Mudroňová D, Kubašková T, Csank T, Tkáčiková Ľ. Exopolysaccharides of Lactobacillus reuteri: Their influence on adherence of E. coli to epithelial cells and inflammatory response. Carbohydr Polym 2016;141:10-9. https://doi.org/10.1016/j.carbpol.2015.12.037
[86] Kang MS, Lim HS, Kim SM, Lee HC, Oh JS. Effect of Weissella cibaria on Fusobacterium nucleatum-induced interleukin-6 and interleukin-8 production in KB cells. J Bacteriol 2011;41:9-18. https://doi.org/10.4167/jbv.2011.41.1.9
[87] Invernici MM, Salvador SL, Silva PH, Soares MS, Casarin R, Palioto DB, Souza SL, Taba Jr M, Novaes Jr AB, Furlaneto FA, Messora MR. Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: a randomized clinical trial. J Clin Periodontol 2018;45:1198-210. https://doi.org/10.1111/jcpe.12995
[88] Galofré M, Palao D, Vicario M, Nart J, Violant D. Clinical and microbiological evaluation of the effect of Lactobacillus reuteri in the treatment of mucositis and peri‐implantitis: A triple‐blind randomized clinical trial. J Periodontal Res 2018;53:378-90. https://doi.org/10.1111/jre.12523
[89] İnce G, Gürsoy H, İpçi ŞD, Cakar G, Emekli‐Alturfan E, Yılmaz S. Clinical and biochemical evaluation of lozenges containing Lactobacillus reuteri as an adjunct to non‐surgical periodontal therapy in chronic periodontitis. J Periodontol 2015;86:746-54. https://doi.org/10.1902/ jop.2015.140612