Abstract
Fruit and vegetables are excellent sources of health-promoting bioactive compounds and nutraceuticals. Regular consumption of fruit and vegetables helps prevent the onset and progression of many non-communicable diseases. The Mediterranean diet envisages consumption of healthy vegetables and fruit on a daily basis for maximum health benefits. Traditional use envisages vegetable-based and fruit-based diets, and many studies scientifically proved the beneficial effects of Mediterranean vegetables and fruits. Rich in bioactive phytochemicals, citrus, cucumbers and grapes have antioxidant, anti-inflammatory, antimicrobial, cardioprotective, anti-ageing and anti-cancer properties. Studies indicate that intake of citrus, cucumbers and grapes reduces hypertension, hyperlipidemia, skin problems and infections and improves the health of the cardiovascular and nervous systems. These beneficial effects are mediated by several bioactive molecules present in Mediterranean diet vegetables and fruits, such as citrus, cucumbers and grapes. Indeed, they contains flavones, isoflavones, tannins, polyphenols and many beneficial natural molecules. This review focuses on the bioactive ingredients in citrus fruit, cucumbers and grapes, all components of the Mediterranean diet, and their health effects. A deep understanding of Mediterranean diet’s components, as well as clinical trials to test natural molecules beneficial effects, will permit to further explore the therapeutic potential of the Mediterranean diet in several pathological conditions.
References
Favela-Hernández JM, González-Santiago O, Ramírez-Cabrera MA, Esquivel-Ferriño PC, Camacho-Corona Mdel R. Chemistry and pharmacology of citrus sinensis. Molecules 2016;21:247.https://doi.org/10.3390/molecules21020247
Lev X, Zhao S, Ning Z, Zeng H, Shu Y, Tao O, Xiao C, Lu C, LiuY. Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chem Cent J 2015;9:68. https://doi.org/10.1186/s13065-015-0145-9
Ejaz S, Ejaz A, Matsuda K, Lim CW. Limonoids as cancer chemopreventive agents. J Sci Food Agric 2006;86:339-45. https://doi.org/10.1002/jsfa.2396
Nutritional and health benefits of citrus fruits. Available at: https://agris.fao.org/agris-search/search.do?recordID=XF2000392903(Accessed on 08/08/2022).
Citrus health benefits. Available at: https://dokumen.tips/documents/citrus-health-benefits-health-benefits-of-citrus-fruitscsiro-full-report1.html?page=1 (Accessed on 08/08/2022).
Hirata T, Fujii M, Akita K, Yanaka N, Ogawa K, Kuroyanagi M, Hongo D. Identification and physiological evaluation of the components from citrus fruits as potential drugs for anticorpulence and anticancer. Bioorg Med Chem 2009;17:258. https://doi.org/10.1016/j.bmc.2008.11.039
Kiani AK, Dhuli K, Anpilogov K, Bressan S, Dautaj A, Dundar M, Beccari T, Ergoren MC, Bertelli M. Natural compounds as inhibitors of SARS-CoV-2 endocytosis: A promising approach against COVID-19. Acta Biomed 2020;91:e2020008. https://doi.org/10.23750/abm.v91i13-S.10520
Bertelli M, Kiani AK, Paolacci S, Manara E, Kurti D, Dhuli K, Bushati V, Miertus J, Pangallo D, Baglivo M, Beccari T, Michelini S. Hydroxytyrosol: A natural compound with promising pharmacological activities. J Biotechnol 2020;309:29-33. https://doi.org/10.1016/j.jbiotec.2019.12.016Z. NAUREEN ET AL.E26
Paolacci S, Ergoren MC, De Forni D, Manara E, Poddesu B, Cugia G, Dhuli K, Camilleri G, Tuncel G, Kaya Suer H, Sultanoglu N, Sayan M, Dundar M, Beccari T, Ceccarini MR, Gunsel IS, Dautaj A, Sanlidag T, Connelly ST, Tartaglia GM, Bertelli M. In vitro and clinical studies on the efficacy of α-cyclodextrin and hydroxytyrosol against SARS-CoV-2infection. Eur Rev Med Pharmacol Sci 2021;25:81-9. https://doi.org/10.26355/eurrev_202112_27337
Dhuli K, Ceccarini MR, Precone V, Maltese PE, Bonetti G, Paolacci S, Dautaj A, Guerri G, Marceddu G, Beccari T, Michelini S, Bertelli M. Improvement of quality of life by intake of hydroxytyrosol in patients with lymphedema and association of lymphedema genes with obesity. Eur Rev Med Pharmacol Sci2021;25:33-42. https://doi.org/10.26355/eurrev_202112_27331
Akachi T, Shiina Y, Ohishi Y, Kawaguchi T, Kawagishi H, MoritaT, Mori M, Sugiyama K. Hepatoprotective effects of flavonoids from shekwasha (Citrus depressa) against D-galactosamine induced liver injury in rats. J Nutr Sci Vitaminol (Tokyo).2010;56:60-7. https://doi.org/10.3177/jnsv.56.60
Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 2010;109:515-27. https://doi.org/10.1111/j.1365-2672.2010.04677.x
Murata K, Takano S, Masuda M, Iinuma M, Matsuda H. Antidegranulating activity in rat basophil leukemia RBL-2H3 cells of flavanone glycosides and their aglycones in citrus fruits. J Nat Med 2013;67:643-6. https://doi.org/10.1007/s11418-012-0699-y
Ono E, Inoue J, Hashidume T, Shimizu M, Sato R. Antiobesity and anti-hyperglycemic effects of the dietary citrus limonoid nomilin in mice fed a high-fat diet. Biochem BiophysRes Commun 2011;410:677-81. https://doi.org/10.1016/j.bbrc.2011.06.055
Espina L, Somolinos M, Lorán S, Conchello P, García D, PagánR. Chemical composition of commercial citrus fruit essential oils and evaluation of their antimicrobial activity acting alone or in combined processes. Food control 2011;22:896-902. https://doi.org/10.1016/j.foodcont.2010.11.021
Ito A, Shin N, Tsuchida T, Okubo T, Norimoto H. Antianxietylike effects of chimpi (dried citrus peels) in the elevated open-platform test. Molecules 2013;18:10014-23. https://doi.org/10.3390/molecules180810014
Sotiroudis G, Melliou E, Sotiroudis TG, Chinou I. Chemical analysis, antioxidant and antimicrobial activity of three Greek cucumber (Cucumis sativus) cultivars. J Food Biochem 2010;34:61-78. https://doi.org/10.1111/j.1745-4514.2009.00296.x
Peter KV, Abraham Z. Biodiversity in horticultural crops. New Delhi: Daya publishing house; 2007.
Kapoor LD. CRC handbook of Ayurvedic medicinal plants.Florida: CRC Press LLC; 1990.
Mukherjee PK, Maity N, Nema NK, Sarkar BK. Bioactive compounds from natural resources against skin aging. Phytomedicine 2011;19:64-73. https://doi.org/10.1016/j.phymed.2011.10.003
Anonymous. Ayurvedic Pharmacopoeia of India, The Controller of Publication. New Delhi: National Institute of Science Communication and Information Resources (NISCAIR); 2001
Chen JC, Chiu MH, Nie RL, Cordell GA, Qiu SX. Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 2005;22:386-99. https://doi.org/10.1039/b418841c. Epub 2005 4. Erratum in: Nat Prod Rep 2005;22:794-5. PMID: 16010347. https://doi.org/10.1039/b418841c
Tuama AA, Mohammed AA. Phytochemical screening andin vitro antibacterial and anticancer activities of the aqueous extract of Cucumis sativus. Saudi J Biol Sci 2019;26:600-4.https://doi.org/10.1016/j.sjbs.2018.07.012
Begum HA, Asad F, Sadiq A, Mulk S, Ali K. 44. Antioxidant, antimicrobial activity and phytochemical analysis of the seeds extract of Cucumis sativus Linn. Pure Appl Biol 2019 1;8:433-41. http://dx.doi.org/10.19045/bspab.2018.700202
Saidu AN, Oibiokpa FI, Olukotun IO. Phytochemical screening and hypoglycemic effect of methanolic fruit pulp extract of Cucumis sativus in alloxan-induced diabetic rats. J Med Plant Res 2014;8:1173-8. https://doi.org/10.5897/JMPR2014.5506
Hakim AR, Saputri R. Identifikasi senyawa kimia ekstrak etanol mentimun (Cucumis sativus L.) dan ekstrak etanol nanas(Ananas comosus (L) Merr). J Pharm Sci 2017;04:34-8. http://dx.doi.org/10.20527/jps.v4i1.5753
Rice CA, Rymal KS, Chambliss OL, Johnson FA. Chromatographic and mass spectral analysis of cucurbitacins of three Cucumis sativus cultivars. J Agric Food Chem1981;29:194-6. https://doi.org/10.1021/jf00103a051
Alghasham AA. Cucurbitacins - a promising target for cancer therapy. Int J Health Sci (Qassim) 2013;7:77-89. https://doi.org/10.12816/0006025
McNally DJ, Wurms KV, Labbé C, Quideau S, Bélanger RR. Complex C-glycosyl flavonoid phytoalexins from Cucumis sativus. J Nat Prod 2003;66:1280-3. https://doi.org/10.1021/np030150y
Kai H, Baba M, Okuyama T. Two new megastigmanes from the leaves of Cucumis sativus. Chem Pharm Bull (Tokyo)2007;55:133-6. https://doi.org/10.1248/cpb.55.133
Abou-Zaid MM, Lombardo DA, Kite GC, Grayer RJ, Veitch NC. Acylated flavone C-glycosides from Cucumis sativus. Phytochemistry 2001;58:167-72. https://doi.org/10.1016/s0031-9422(01)00156-x
Krauze-Baranowska M, Cisowski W. Flavonoids from some species of the genus Cucumis. Biochem Syst Ecol 2001;29:321-4. https://doi.org/10.1016/s0305-1978(00)00053-3
Kumar D, Kumar S, Singh J, Narender, Rashmi, Vashistha B, Singh N. Free Radical Scavenging and Analgesic Activities of Cucumis sativus L. Fruit Extract. J Young Pharm 2010;2:365-8.https://doi.org/10.4103/0975-1483.71627
Gill NS, Garg M, Bansal R, Sood S, Muthuraman A, Bali M, Sharma PD. Evaluation of antioxidant and antiulcer potential of Cucumis sativus L. seed extract in rats. Asian J Clin Nutr2009;1:131-8. https://doi.org/10.3923/ajcn.2009.131.138
Swaminathan G, Sundaram RS, Mamatha M, Vaijayanthimala P. Evaluation of in vitro anticancer activity of Cucumis sativus Linn leaves. IJRPP 2015;4:223-9.
Ankita S, Kaur P, Gupta R. Phytochemical screening and antimicrobial assay of various seeds extracts of Cucurbitaceae Family. Int J Appl Biol Pharm 2012;3:401-9.
Mallik J, Akhter R. Phytochemical screening and in-vitro evaluation of reducing power, cytotoxicity and anti-fungal activities of ethanol extracts of Cucumis sativus. Int J PharmBiol 2012;3:555-60.
Heidari H, Kamalinejad M, Eskandari M. Hepatoprotective activity of Cucumis sativus against cumene hydroperoxide induced-oxidative stress. Res Pharm Sci 2012;7:S936-S939.
Sharmin R, Khan MRI, Akhtar MA, Alim A, Islam MA, Anisuzzaman ASM, Ahmed M. Hypoglycemic and hypolipidemic effects of cucumber, white pumpkin and ridge gourd in alloxan induced diabetic rats. J Sci Res 2013;5:161-70.https://doi.org/10.3329/jsr.v5i1.10252
Liang N, Kitts DD. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients2015;8:16. https://doi.org/10.3390/nu8010016
Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H. Berryphenolics of grapevine under challenging environments. Int J Mol Sci 2013;14:18711-39. https://doi.org/10.3390/ijms140918711
Yuzuak S, Ballington J, Xie DY. HPLC-qTOF-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66.Metabolites 2018;8:57. https://doi.org/10.3390/metabo8040057
Šuković D, Knežević B, Gašić U, Sredojević M, Ćirić I, Todić S, Mutić J, Tešić Ž. Phenolic profiles of leaves, grapes and wine of grapevine variety vranac (Vitis vinifera L.) from Montenegro. Foods 2020;9:138. https://doi.org/10.3390/foods9020138
Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R. Metabolite profiling of grape: flavonols and anthocyanins. J Agric Food Chem 2006;54:7692-702. https://doi.org/10.1021/jf061538c
Schoedl K, Schuhmacher R, Forneck A. Studying the polyphenols of grapevine leaves according to age and insertion level under controlled conditions. Sci Hortic 2012;141:37-41. https://doi.org/10.1016/j.scienta.2012.04.014
He F, Liang NN, Mu L, Pan QH, Wang J, Reeves MJ, Duan CQ. Anthocyanins and their variation in red wines I. Monomeric anthocyanins and their color expression. Molecules2012;17:1571-601. https://doi.org/10.3390/molecules17021571
Pantelić MM, Zagorac DČ, Davidović SM, Todić SR, Bešlić ZS, Gašić UM, Tešić ŽL, Natić MM. Identification and quantification of phenolic compounds in berry skin, pulp and seeds in 13grapevine varieties grown in Serbia. Food Chem 2016;211:243-52. https://doi.org/10.1016/j.foodchem.2016.05.051
de Freitas V, Mateus N. Formation of pyranoanthocyanins inred wines: A new and diverse class of anthocyanin derivatives. Anal Bioanal Chem 2011;401:1463-73. https://doi.org/10.1007/s00216-010-4479-9
Gómez-Brandón M, Lores M, Insam H, Domínguez J. Strategies for recycling and valorization of grape marc. Crit Rev Biotechnol 2019;39:437-50. https://doi.org/10.1080/07388551.2018.1555514
Klatsky AL. Alcohol and cardiovascular diseases: where do we stand today? J Intern Med 2015;278:238-50. https://doi.org/10.1111/joim.12390
Matsumoto C, Miedema MD, Ofman P, Gaziano JM, Sesso HD. An expanding knowledge of the mechanisms and effects of alcohol consumption on cardiovascular disease. J Cardiopulm Rehabil Prev2014;34:159-71. https://doi.org/10.1097/HCR.0000000000000042
Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean Diet; a Literature Review. Nutrients2015;7:9139-53. https://doi.org/10.3390/nu7115459
Caimi G, Carollo C, Presti RL. Diabetes mellitus: oxidative stress and wine. Curr Med Res Opin 2033;19:581-6. https://doi.org/10.1185/030079903125002324
Bakuradze T, Tausend A, Galan J, Groh IA, Berry D, Tur JA, Marko D, Richling E. Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free Radic Res 2019;53:1045-55. https://doi.org/10.1080/10715762.2019.1618851
Tsuda T. Dietary anthocyanin‐rich plants: biochemical basis and recent progress in health benefits studies. Mol Nutr Food Res 2012;56:159-70. https://doi.org/10.1002/mnfr.201100526
Camire ME, Chaovanalikit A, Dougherty MP, Briggs J. Blueberry and grape anthocyanins as breakfast cereal colorants. J Food Sci 2002;67:438-41. https://doi.org/10.1111/j.1365-2621.2002.tb11425.x
Kiani AK, Falsini B, Ziccardi L, Gusso E, Mangialavori D, Allegrini F, Colao E Bertelli M. Flavonoid supplements increase neurotrophin activity to modulate inflammation in retinal genetic diseases. Acta Biomed 2020;91:e2020014. https://doi.org/10.23750/abm.v91i13-S.10683
Mastroiacovo D, Kwik-Uribe C, Grassi D, Necozione S, Raffaele A, Pistacchio L, Righetti R, Bocale R, Lechiara MC, Marini C, Ferri C. Cocoa flavanol consumption improves cognitive function, blood pressure control and metabolic profile in elderly subjects: the Cocoa, Cognition and Aging (CoCoA) Study – a randomized controlled trial. Am J Clin Nutr 2015;101:538-48. https://doi.org/10.3945/ajcn.114.092189
Aron PM, Kennedy JA. Flavan-3-ols: Nature, occurrence and biological activity. Mol Nutr Food Res 2008;52:79-104. https://doi.org/10.1002/mnfr.200700137
Zuiter AS. Proanthocyanidin: Chemistry and Biology: From Phenolic Compounds to Proanthocyanidins. Reference Modulein Chem Eng Sci 2014. https://doi.org/10.1016/b978-0-12-409547-2.11046-7
Farooqui AA, Farooqui T. Importance of fruit and vegetable-derived flavonoids in the mediterranean diet. In: Role of the Mediterranean diet in the brain and neurodegenerative diseases. 2018:417-27.https://doi.org/10.1016/b978-0-12-811959-4.00027-4
Wong MCY, Emery PW, Preedy VR, Wiseman H. Health benefits of isoflavones in functional foods? Proteomic and metabonomic advances. Inflammopharmacology 2008;16:235-9. https://doi.org/10.1007/s10787-008-8023-x
Kumar N, Goel N. Phenolic acids: Natural versatile molecule swith promising therapeutic applications. Biotechnol Rep2019;24:e00370. https://doi.org/10.1016/j.btre.2019.e00370
Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. J Agric Food Chem2002;50:3337-40. https://doi.org/10.1021/jf0112973
Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. Resveratrol, pterostilbene and piceatannol in vaccinium berries. J Agric Food Chem 2004;52:4713-9. https://doi.org/10.1021/jf040095e
Sanders TH, McMichael RW Jr, Hendrix KW. Occurrence of resveratrol in edible peanuts. J Agric Food Chem 2000;48:1243-6. https://doi.org/10.1021/jf990737b
Hurst WJ, Glinski JA, Miller KB, Apgar J, Davey MH, Stuart DA. Survey of the trans-resveratrol and trans-piceid content of cocoa-containing and chocolate products. J Agric Food Chem2008;56:8374-8. https://doi.org/10.1021/jf801297w
Almatroodi SA, Almatroudi A, Alsahli MA, Rahman AH. Grapes and their bioactive compounds: role in health management through modulating various biological activities. Pharmacogn J2020;12:1455-62. https://doi.org/10.5530/pj.2020.12.200
Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med.1995;155:381-6.
Wang H, Xue Y, Zhang H, Huang Y, Yang G, Du M, Zhu MJ. Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL 10‐deficient mice. Mol Nutr Food Res 2013;57:2253-7. https://doi.org/10.1002/mnfr.201300146
Mercolini L, Mandrioli R, Raggi MA. Content of melatonin and other antioxidants in grape‐related foodstuffs: measurement using a MEPS‐HPLC‐F method. J Pineal Res 2012;53:21-8.https://doi.org/10.1111/j.1600-079X.2011.00967.x
Rasines-Perea Z, Teissedre PL. Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules2017;22:68. https://doi.org/10.3390/molecules22010068
Jiménez JP, Serrano J, Tabernero M, Arranz S, Díaz-Rubio ME, García-Diz L, Goñi I, Saura-Calixto F. Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition 2008;24:646-53. https://doi.org/10.1016/j.nut.2008.03.012
Zhao CN, Meng X, Li Y, Li S, Liu Q, Tang GY, Li HB. Fruits for prevention and treatment of cardiovascular diseases. Nutrients2017;9:598. https://doi.org/10.3390/nu9060598