Abstract
Introduction
Since 2012, the European Centre for Disease Prevention and Control (ECDC)
promotes a point prevalence survey (PPS) of HAIs in European acute care hospitals. Through a
retrospective analysis of 2012, 2015 and 2017 PPS of HAIs performed in a tertiary academic
hospital in Italy, we developed a model to predict the risk of HAI.
Methods
Following ECDC protocol we surveyed 1382 patients across three years. Bivariate logistic
regression analyses were conducted to assess the relationship between HAI and several variables.
Those statistically significant were included in a stepwise multiple regression model. The goodness
of fit of the latter model was assessed with the Hosmer-Lemeshow test, ultimately constructing a
probability curve to estimate the risk of developing HAIs.
Results
Three variables resulted statistically significant in the stepwise logistic regression model:
length of stay (OR 1.03; 95% C.I.: 1.02-1.05), devices breaking the skin (i.e. peripheral or central
vascular catheter, OR 4.38; 95% C.I.: 1.52-12.63), urinary catheter (OR 4.71; 95% C.I.: 2.78-7.98).
Conclusion
PPSs are a convenient and reliable source of data to develop HAIs prediction models.
The differences found between our results and previously published studies suggest the need of
developing hospital-specific databases and predictive models for HAIs.
References
[1] “WHO | Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level,” WHO, 2018.
[2] E. Ferreira, E. Pina, M. Sousa-Uva, and A. Sousa-Uva, “Risk factors for health care-associated infections: From better knowledge to better prevention.,” Am. J. Infect. Control, vol. 45, no. 10, pp. e103–e107, Oct. 2017, doi: 10.1016/j.ajic.2017.03.036.
[3] C. Suetens, S. Hopkins, J. Kolman, and L. Diaz Högberg, “Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals Point prevalence survey of healthcare- associated infections and antimicrobial use in European acute care hospitals,” 2011.
[4] P. Antonioli, M. C. Manzalini, A. Stefanati, B. Bonato, A. Verzola, A. Formaglio, and G. Gabutti, “Temporal trends of healthcare associated infections and antimicrobial use in 2011-2013, observed with annual point prevalence surveys in Ferrara University Hospital, Italy,” J. Prev. Med. Hyg., 2016.
[5] V. Nair, D. Sharma, A. K. Sahni, N. Grover, S. Shankar, S. S. Jaiswal, S. S. Dalal, D. R. Basannar, V. S. Phutane, A. Kotwal, G. Gopal Rao, D. Batura, M. D. Venkatesh, T. Sinha, S. Kumar, and D. P. Joshi, “Antimicrobial use and antimicrobial resistance in nosocomial pathogens at a tertiary care hospital in Pune,” Med. J. Armed Forces India, 2015, doi: 10.1016/j.mjafi.2014.12.024.
[6] European Centre for Disease Prevention and Control, “Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. Protocol version 4.2.,” 2011.
[7] “HelicsWin.Net (HWN).” [Online]. Available: https://ecdc.europa.eu/en/publications-data/helicswinnet-hwn. [Accessed: 26-Sep-2018].
[8] CDC, Oid, Ncezid, and DHQP, “9 Surgical Site Infection (SSI) Event,” 2018.
[9] J. S. Reilly, B. Coignard, L. Price, J. Godwin, S. Cairns, S. Hopkins, O. Lyytikäinen, S. Hansen, W. Malcolm, and G. J. Hughes, “The reliability of the McCabe score as a marker of co-morbidity in healthcare-associated infection point prevalence studies.,” J. Infect. Prev., vol. 17, no. 3, pp. 127–129, May 2016, doi: 10.1177/1757177415617245.
[10] I. Klavs, T. Bufon Lužnik, M. Škerl, M. Grgič-Vitek, T. Lejko Zupanc, M. Dolinšek, V. Prodan, M. Vegnuti, A. Kraigher, and Z. Arnež, “Prevalance of and risk factors for hospital-acquired infections in Slovenia—results of the first national survey, 2001,” J. Hosp. Infect., vol. 54, no. 2, pp. 149–157, Jun. 2003, doi: 10.1016/S0195-6701(03)00112-9.
[11] Y. Zhang, J. Zhang, D. Wei, Z. Yang, Y. Wang, and Z. Yao, “Annual surveys for point-prevalence of healthcare-associated infection in a tertiary hospital in Beijing, China, 2012-2014,” BMC Infect. Dis., 2016, doi: 10.1186/s12879-016-1504-4.
[12] S. Saint, S. R. Kaufman, M. A. M. Rogers, P. D. Baker, E. J. Boyko, and B. A. Lipsky, “Risk factors for nosocomial urinary tract–related bacteremia: A case-control study,” Am. J. Infect. Control, vol. 34, no. 7, pp. 401–407, Sep. 2006, doi: 10.1016/J.AJIC.2006.03.001.
[13] J. Meddings, M. A. M. Rogers, S. L. Krein, M. G. Fakih, R. N. Olmsted, and S. Saint, “Reducing unnecessary urinary catheter use and other strategies to prevent catheter-associated urinary tract infection: an integrative review.,” BMJ Qual. Saf., vol. 23, no. 4, pp. 277–89, Apr. 2014, doi: 10.1136/bmjqs-2012-001774.
[14] L. Segagni Lusignani, A. Blacky, P. Starzengruber, M. Diab-Elschahawi, T. Wrba, and E. Presterl, “A national point prevalence study on healthcare-associated infections and antimicrobial use in Austria,” Wien. Klin. Wochenschr., vol. 128, no. 3–4, pp. 89–94, Feb. 2016, doi: 10.1007/s00508-015-0947-8.
[15] C. Sticchi, M. Alberti, S. Artioli, M. Assensi, I. Baldelli, A. Battistini, S. Boni, G. Cassola, E. Castagnola, M. Cattaneo, N. Cenderello, M. L. Cristina, A. M. De Mite, P. Fabbri, F. Federa, D. R. Giacobbe, D. La Masa, C. Lorusso, K. Marioni, V. M. Masi, B. Mentore, S. Montoro, A. Orsi, D. Raiteri, R. Riente, I. Samengo, C. Viscoli, R. Carloni, C. Alicino, I. Barberis, V. Faccio, F. Grammatico, L. Magnasco, C. Paganino, C. Saffioti, G. Sarteschi, R. Ungaro, D. Bellina, V. Daturi, A. M. Di Bella, B. Guglielmi, G. Icardi, A. Morando, A. Talamini, M. Tomei, M. P. Crisalli, P. Sansone, and M. Santini, “Regional point prevalence study of healthcare-associated infections and antimicrobial use in acute care hospitals in Liguria, Italy,” J. Hosp. Infect., vol. 99, no. 1, pp. 8–16, May 2018.
[16] P. Zarb, B. Coignard, J. Griskeviciene, A. Muller, V. Vankerckhoven, K. Weist, M. M. Goossens, S. Vaerenberg, S. Hopkins, B. Catry, D. L. Monnet, H. Goossens, and C. Suetens, “The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use,” vol. 17, no. 46, 2012.
[17] C. Paxton, A. Niculescu-Mizil, and S. Saria, “Developing predictive models using electronic medical records: challenges and pitfalls.,” AMIA ... Annu. Symp. proceedings. AMIA Symp., vol. 2013, pp. 1109–15, 2013.