Effects of the mediterranean diet polyphenols on cancer development


Mediterranean diet


Globally, the second most common mortality reason is cancer. There are two types of risk factors for cancer: intrinsic (unmodifiable) and non-intrinsic (modifiable). Bad lifestyle behaviors are among the exogenous non-intrinsic risk factors that can be related to 30-50% of cancer development risk, among which can be counted the Western lifestyle. On the contrary, a potentially good lifestyle model to prevent cancer is the Mediterranean diet (MD), which is a plant-based nutrition model. The Mediterranean diet includes many beneficial nutrients and nutritional substances, such as dietary fibers, fatty acids, anti-oxidant and anti-inflammatory substances, etc. Among these beneficial substances, an important group is the one composed by polyphenols, the most common plant-synthesized secondary metabolites. Being a plant-based nutrition model, the Mediterranean diet provides many polyphenols, such as resveratrol, quercetin, phenolic acids, catechins, anthocyanins, oleocanthal, oleuropein, rosmarinic acid, gallic acid, hesperidin, naringenin, ellagic acid, etc. These substances show anti-proliferative, pro-apoptotic, anti-inflammatory, anti-oxidant, anti-migration, anti-angiogenic, anti-metastatic, and autophagy stimulator effects, which can potentially reduce cancer development risk, as was shown by some in vivo and in vitro studies on this topic. In this review of the literature we shed light on the effects and potential interactions between the Mediterranean diet polyphenols and cancer development.



[1] Torpy JM, Lynm C, Glass R. Cancer: The basics. JAMA 2010;304:1628. https://doi.org/10.1001/jama.303.11.1108
[2] Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov 2022;12:31-46. https://doi.org/10.1158/2159-8290.CD21-1059
[3] World Health Organization. Cancer [Last revision: 3rd February 2022]. https://www.who.int/news-room/fact-sheets/detail/ cancer. March, 2022.
[4] Wu S, Zhu W, Thompson P, Hannun YA. Evaluating intrinsic and non-intrinsic cancer risk factors. Nat Commun 2018;9:1-12. https://doi.org/10.1038/s41467-018-05467-z
[5] McKenzie F, Carine B, Ferrari P, Freisling H, Rinaldi S, Chajẻs V, Dahm CC, Overvad K, Dossus L, Lagiou P, Trichopoulos D, Trichopolou A, Bueno-de-Mesquita H, May A, Peeters PH, Weiderpass E, Sanchez MJ, Navarro C, Ardanaz E, Ericson U, Wirfält E, Travis RC, Romieu I. Healthy lifestyle and risk of cancer in the European prospective investigation into cancer and nutrition study. Medicine 2016;95:1-10. https://doi.org/10.1097/ MD.0000000000002850
[6] Dayi T, Erge S. Effects of dietary fiber and colon microbiota on colon cancer risk. Bes Diy Derg 2020;48:91-97. https://doi.org/10.33076/2020.BDD.1284
[7] Dominguez LJ, Di Bella G, Veronese N, Barbagallo M. Impact of Mediterranean diet on chronic non-communicable diseases and longevity. Nutrients 2021;13:1-32. https://doi.org/10.3390/ nu130620208
[8] Mentella MC, Scaldaferri F, Ricci C, Gasbarrini A, Miggiano GAD. Cancer and Mediterranean diet: A review. Nutrients 2019;11:1-25. https://doi.org/10.3390/nu11092059
[9] Yiannakou I, Singer MR, Jacques PF, Xanthakis V, Ellison RC, Moore LL. Adherence to a Mediterranean-style dietary pattern and cancer risk in a prospective cohort study. Nutrients 2021;13:1-14. https://doi.org/10.3390/nu13114064
[10] Barak Y, Fridman D. Impact of Mediterranean diet on cancer: Focused literature review. Cancer Genomics Proteomics 2017;14:403-8. https://doi.org/10.21873/cgp.20050
[11] Schulpen M, van den Brandt PA. Adherence to the Mediterranean diet and overall cancer incidence: The Netherlands cohort study. J Acad Nutr Diet 2021;121:243-52. https://doi.org/10.1016/j. jand.2020.07.025
[12] Morze J, Danlelewicz A, Przybylowicz K, Zeng H, Hoffmann G, Schwingshackl L. An updated systematic review and metaanalysis on adherence to Mediterranean diet and risk of cancer. Eur J Nutr 2021;60:1561-86. https://doi.org/10.1007/s00394020-02346-6
[13] Pauwels EKJ. The protective effect of the Mediterranean diet: Focus on cancer and cardiovascular risk. Med Princ Pract 2011;20:103-11. https://doi.org/10.1159/000321197
[14] Bach-Faig A, Berry EM, Lairon D, Reguant J, Trichopoulou A, Dernini S, Medina FX, Battino M, Belahsen R, Miranda G, Serra-Majem L. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr 2011;14:2274-84. https://doi.org/10.1017/S1368980011002515
[15] Davis C, Bryan J, Hodgson J, Murphy K. Definition of the Mediterranean diet: A literature review. Nutrients 2015;7:913953. https://doi.org/10.3390/nu7115459
[16] Trichopoulou A, Martínez-Gonzάlez MA, Tong TYN, Forouhi NG, Khandelwal S, Prabhakaran D, Mozaffarian D, de Lorgeril M. Definitions and potential health benefits of the Mediterranean diet: Views from experts around the world. BMC Med 2014;12:1-16. https://doi.org/10.1186/1741-7015-12-112
[17] Ortega RM. Importance of functional foods in the Mediterranean diet. Public Health Nutr 2006;9:1136-40. https://doi.org/10.1017/S1368980007668530
[18] Tapsell LC. Foods and food components in the Mediterranean diet: Supporting overall effects. BMC Med 2014;12:1-3. https://doi.org/10.1186/1741-7015-12-100
[19] Dayi T, Oniz A. Culture and adherence to the Mediterranean diet: An island’s scope. Prog Nutr 2021;23:1-9. https://doi.org/10.23751/pn.v23i4.11480
[20] Kapolou A, Karantonis HC, Rigopoulos N, Koutelidakis AE. Association of mean daily polyphenols intake with Mediterranean diet adherence and anthropometric indices in healthy Greek adults: A retrospective study. Applied Sciences 2021;11:1-12. https://doi.org/10.3390/app11104664
[21] Bayır AG, Aksoy AN, Koçyiğit A. The importance of polyphenols as functional food in health. Bezmialem Science 2019;7:157-63. https://doi.org/10.14235/bas.galenos.2018.2486
[22] Nemzer B, Kalita D, Yashin AY, Yashih YI. Chemical composition and polyphenolic compounds od red wines: Their antioxidant activities and effects on human health – A review. Beverages 2022;8:1-18. https://doi.org/10.3390/beverages8010001
[23] Lucarini M, Durazzo A, Lombardi-Boccia G, Souto EB, Cecchini F, Santini A. Wine polyphenols and health: Quantitative research literature analysis. Applied Sciences 2021;11:1-13. https://doi.org/10.3390/app11114762
[24] Pedan V, Popp M, Rohn S, Nyfeler M, Bongartz A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules 2019;24:1-19. https://doi.org/10.3390/molecules24112041
[25] Lima GPP, Vianello F, Corrêa CR, da Silva Campos RA, Borguini MG. Polyphenols in fruits and vegetables and its effect on human health. Food Sci Nutr 2014;5:1065-82. https://doi.org/10.4236/fns.2014.511117
[26] Khan MK, Huma ZE, Dangles O. A comprensive review on flavanones, the major citrus polyphenols. J Food Compos Anal 2014;33:85-104. https://doi.org/10.1016/j.jfca.2013.11.004
[27] Lanzotti V. The analysis of onion and garlic. J Chromatogr A 2006;1112:3-22. https://doi.org/10.1016/j.chroma.2005.12.016
[28] Bower A, Marquez S, De Majia EG. The health benefits of selected culinary herbs and spices found in the traditional Mediterranean diet. Crit Rev Food Sci Nutr 2016;56:2728-46. https://doi.org/10.1080/10408398.2013.805713
[29] Cannataro R, Fazio A, Torre CL, Caroleo MC, Cione E. Polyphenols in the Mediterranean diet: From dietary sources to microRNA modulation. Antioxidants 2021;10:1-24. https://doi.org/10.3390/antiox10020328
[30] Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, Mavumengwana V, Li HB. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019;8:1-31. https://doi.org/10.3390/foods807024
[31] Singh B, Singh JP, Kaur A, Singh N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res Int 2017;101:1-16. https://doi.org/10.1016/j.foodres.2017.09.026
[32] Vervandier-Fasseur D, Latruffe N. The potential use of resveratrol for cancer prevention. Molecules 2019;24:1-12. https://doi.org/10.3390/molecules24244506
[33] Alavi M, Farkhondeh T, Aschner M, Samarghandian S. Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation. Cancer Cell 2021;21:1-9. https://doi.org/10.1186/s12935-021-02280-5
[34] Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights if quercetin action is respect to its anti-cancer effects. Biomed Pharmacother 2020;121:1-7. https://doi.org/10.1016/j.biopha.2019.109604
[35] Gibellini L, Pinti M, Nasi M, Montagna JP, De Biasi S, Roat E, Bertoncelli L, Cooper EL, Cossarizza A. Quercetin and cancer chemoprevention. HPC 2011;2011:1-15. https://doi.org/10.1093/ecam/neq053
[36] Jiang M, Zhu M, Wang L, Yu S. Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed Pharmacother 2019;120:1-10. https://doi.org/10.1016/j.biopha.2019.109506
[37] Musail C, Kuban-Jankowska A, Gorksa-Ponikowska M. Beneficial properties of green tea catechins. Int J Mol Sci 2020;21:1-11. https://doi.org/10.3390/ijms21051744
[38] Cheng Z, Zhang Z, Han Y, Wang J, Wang Y, Chen X, Shao Y, Cheng Y, Zhou W, Lu X, Wu Z. A review on anti-cancer effect of green tea catechins. J Func Foods 2020;74:1-20. https://doi.org/10.1016/j.jff.2020.104172
[39] Lin BW, Gong CC, Song HF, Cui YY. Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 2017;174:1226-1243. https://doi.org/10.1111/bph.13627
[40] Mottaghipisheh J, Doustimotlagh AH, Irajie C, Tanideh N, Barzegar A, Iraji A. The promising therapeutic and preventive properties of anthocyanidins/anthocyanins on prostate cancer. Cells 2022;11:1-27. https://doi.org/10.3390/cells11071070
[41] Gorzynik-Debicka M, Przychodzen P, Cappello F, KubanJankowska A, Gammazza AM, Knap N, Wozniak M, GorskaPonikowska M. Potential health benefits of olive oil and plant polyphenols. Int J Mol Sci 2018;19:1-13. https://doi.org/10.3390/ijms19030686
[42] Toric J, Markovic AK, Brala CJ, Barbaric M. Anticancer effects of olive oil polyphenols and their combinations with anticancer drugs. Acta Pharm 2019;69:461-82. https://doi.org/10.2478/ acph-2019-0052
[43] Moore J, Yousef M, Tsiani E. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 2016;8:1-32. https://doi.org/10.3390/ nu8110731
[44] Koolaji N, Shammugasamy B, Schindeler A, Dong Q, Dehghani F, Valtchev P. Citrus peel flavonoids as potential cancer prevention agents. Curr Dev Nutr 2020;4:1-20. https://doi.org/10.1093/cdn/nzaa025
[45] Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 2016;15:1-16. https://doi.org/10.1186/s12937-016-0217-2
[46] Fouad MA, Agha AM, Al Merzabani MM, Shouman SA. Resveratrol inhibits proliferation, angiogenesis and induces apoptosis in colon cancer cells: Calorie restriction is the force to the cytotoxicity. Hum Exp Toxicol 2013;32:1067-80. https://doi.org/10.11177/0960327113475679
[47] Clark PA, Bhattacharya S, Elmayan A, Darjatmoko SR, Thuro BA, Yan MB, van Ginkel PR, Polans AS, Kuo JS. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration. J Neurosurg 2017;126:1448-60. https://doi.org/10.3171/2016.1.JNS152077
[48] Singh B, Shoulson R, Chatterjee A, Ronghe A, Bhat NK, Dim DC, Bhat HK. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis 2014;35:1872-80. https://doi.org/10.1093/carcin/bgu120
[49] Xu G, Chen J, Wang G, Xiao J, Zhang N, Chen Y, Yu H, Wang G, Zhao Y. Resveratrol inhibits the tumorigenesis of follicular thyroid cancer via ST6GAL2-regulated activation of the hippo signaling pathway. Mol Ther Oncolytics 2020;16:124-33. https://doi.org/10.1016/j.omto.2019.12.010
[50] Kusaczuk M, Kretowski R, Naumowicz M, Stypulkowska A, Cechowska-Pasko M. A preliminary study of the effect of quercetin on cytotoxicity, apoptosis and stress responses in glioblastoma cell lines. Int J Mol Sci 2022;23:1-12. https://doi.org/10.3390/ijms23031345
[51] Hashemzei M, Delarami A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, Nikitovic D, Anisimov NY, Spandidos DA, Tastsakis AM, Rezaee R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep 2017;38:819-28. https://doi.org/10.3892/or.2017.5766
[52] Soleimani M, Sajedi N. Myricetin apoptotic effects on T47D breast cancer cells is aP53-independent approach. Asian Pac J Cancer Prev 2020;21:3697-704. https://doi.org/10.31557/ APJCP.2020.21.12.3697
[53] Ye C, Zhang C, Huang C, Yang B, Xiao G, Kong D, Tian Q, Song Q, Song Y, Tan H, Wang Y, Zhou T, Zi X, Sun Y. The natural compound myricetin effectively represses the malignant progression of prostate cancer by inhibiting PIM1 and disrupting the PIM1/ CXCR4 interaction. Cell Physiol Biochem 2018;48:1230-44. https://doi.org/10.1159/00049200
[54] Jing N, Song J, Liu Z, Wang L, Jiang G. Glycosylation of anthocyanins enhances the apoptosis of colon cancer cells by handicapping energy metabolism. BMC Complement Med Ther 2020;20:1-13. https://doi.org/10.1186/s12906-020-03096-y
[55] Wang E, Liu Y, Xu C, Liu J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr Res 2017;61:1-14. https://doi.org/10.1080/16546628.2017.1325308
[56] Siddique AB, Kilgore PCSR, Tajmim A, Singh SS, Meyer SA, Jois SD, Cvek U, Trutschl M, El Sayed KA. Oleocanthal as a dual c-MET-COX2 inhibitor for the control of lung cancer. Nutrients 2020;12:1-25. https://doi.org/10.3390/nu12061749
[57] Coccia A, Mosca L, Puca R, Mangino G, Rossi A, Lendaro E. Extra-virgin olive oil phenols block cell cycle progression and modulate chemotherapeutic toxicity in bladder cancer cells. Oncol Rep 2016;36:3095-3104. https://doi.org/10.3892/ or.2016.5150
[58] Huang L, Chen J, Quan J, Xiang D. Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/ EGFR/AKT/GSK3β axis. Bioengineered 2021;12:3065-76. https://doi.org/10.1080/21655979.2021.1941699
[59] Shi X, Luo X, Chen T, Guo W, Liang C, Tang S, Mo J. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. J Cell Mol Med 2021;25:2563-71. https://doi.org/10.1111/jcmm
[60] Akomolafe SF, Akinyemi AJ, Anadozie SO. Phenolic acids (gallic and tannic acids) modulate antioxidant status and cisplatin induced cephrotoxicity in rats. Int Sch Res Notices 2014;2014:1-8. https://doi.org/10.1155/2014/984709
[61] Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A, Bakogerogou E, Kouimtzaoglou E, Blkeas G, Boskou D, Gravanis A, Castanas E. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res 2004;6:6374. https://doi.org/10.1186/bcr752
[62] Zhang T, Ma L, Wu P, Li W, Gu R, Dan X, Li Z, Fan X, Xiao Z. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non-small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol Rep 2019;41:177988. https://doi.org/10.3892/or.2019.6976
[63] Zhou J, Gao Y, Chang JL, Yu HY, Chen J, Zhou M, Meng XG, Ruan HL. Resorcylic acid lactones from a Ilyonectria sp. J Nat Prod 2020;83:1505-14. https://doi.org/10.1021/acs.jnatprod.9b01167