Determinants of Public Interest in Emerging and Re-Emerging Arboviral Diseases in Europe
pdf

Keywords

Arboviral Diseases
Emerging Diseases
Disease Interest
Google Trends
Perceived Susceptibility

Abstract

Introduction. Climate change, the resulting geographical expansion of arthropod disease vectors, and increasing international mobility are contributing to the emergence of arboviral diseases in Europe. Public interest in vector-borne diseases and a subsequent gain of awareness and knowledge are essential to control outbreaks but had not yet been systematically assessed prior to this analysis.

Methods. Trends, patterns, and determinants of public interest in six emerging and re-emerging arboviral diseases were assessed in a spatio-temporal analysis of Google Trends data from 30 European countries between 2008 and 2020 while controlling for potential confounders.

Results. Only public interest in endemic arboviral diseases in Europe displays seasonal patterns and has been increasing since 2008, while no significant patterns or trends could be determined for public interest in non-endemic diseases. The main drivers for public interest in all six analysed arboviral diseases are reported case rates, and public interest drops rapidly as soon as cases decline. For Germany, the correlation of public interest and the geographical distribution of locally-acquired reported cases of endemic arboviral infections could be shown on a sub-country level.

Conclusions. The results of the analysis indicate that public interest in arboviral diseases in Europe is heavily impacted by perceived susceptibility on a temporal as well as on a spatial level. This result may be crucial for the design of future public health interventions to alert the public to the increasing risk of infection with arboviral diseases.

https://doi.org/10.15167/2421-4248/jpmh2022.63.4.2736
pdf

References

[1] Artsob H, Lindsay R, Drebot M. Arboviruses. In: Quah SR, editor. International Encyclopedia of Public Health (Second Edition), Oxford: Academic Press; 2017, pp. 154–60. doi:10.1016/B978-0-12-803678-5.00023-0.
[2] LaBeaud AD, Bashir F, King CH. Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Popul Health Metr 2011;9:1. doi:10.1186/1478-7954-9-1.
[3] García-Sastre A, Endy TP. Arboviruses. In: Schaechter M, editor. Encyclopedia of Microbiology (Third Edition), Oxford: Academic Press; 2009, pp. 313–21. doi:10.1016/B978-012373944-5.00375-8.
[4] Marchi S, Trombetta CM, Montomoli E. Emerging and Re-emerging Arboviral Diseases as a Global Health Problem. IntechOpen; 2018. doi:10.5772/intechopen.77382.
[5] Failloux A-B, Bouattour A, Faraj C, Gunay F, Haddad N, Harrat Z, et al. Surveillance of Arthropod-Borne Viruses and Their Vectors in the Mediterranean and Black Sea Regions Within the MediLabSecure Network. Curr Trop Med Rep 2017;4:27–39. doi:10.1007/s40475-017-0101-y.
[6] Girard M, Nelson CB, Picot V, Gubler DJ. Arboviruses: A global public health threat. Vaccine 2020;38:3989–94. doi:10.1016/j.vaccine.2020.04.011.
[7] Mordecai EA, Ryan SJ, Caldwell JM, Shah MM, LaBeaud AD. Climate change could shift disease burden from malaria to arboviruses in Africa. The Lancet Planetary Health 2020;4:e416–23. doi:10.1016/S2542-5196(20)30178-9.
[8] Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature 2013;496:504–7. doi:10.1038/nature12060.
[9] WHO. Dengue and severe dengue 2022. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed on 05/18/2022.
[10] Barzon L. Ongoing and emerging arbovirus threats in Europe. Journal of Clinical Virology 2018;107:38–47. doi:10.1016/j.jcv.2018.08.007.
[11] Schmidt-Chanasit J, Tiedke J. Tropical viruses approaching Europe. Med Monatsschr Pharm 2017;40:151–3.
[12] Higgs S, Vanlandingham DL. The potential for the establishment of new arbovirus transmission cycles in Europe. Trans R Soc Trop Med Hyg 2015;109:543–4. doi:10.1093/trstmh/trv061.
[13] Watson R. Europe witnesses first local transmission of chikungunya fever in Italy. BMJ 2007;335:532–3. doi:10.1136/bmj.39332.708738.DB.
[14] La Ruche G, Souarès Y, Armengaud A, Peloux-Petiot F, Delaunay P, Desprès P, et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Euro Surveill 2010;15:19676.
[15] Durand GA, Piorkowski G, Thirion L, Ninove L, Giron S, Zandotti C, et al. Vector-Borne Transmission of the Zika Virus Asian Genotype in Europe. Viruses 2020;12:E296. doi:10.3390/v12030296.
[16] ECDC. Surveillance Atlas of Infectious Diseases. European Centre for Disease Prevention and Control 2022. Available at: http://atlas.ecdc.europa.eu/public/index.aspx. Accessed on 02/01/2022.
[17] ECDC. West Nile virus infection - Annual Epidemiological Report for 2018. European Centre for Disease Prevention and Control 2019. Available at: https://www.ecdc.europa.eu/en/publications-data/west-nile-virus-infection-annual-epidemiological-report-2018. Accessed on 03/11/2022.
[18] ECDC. New settlements of Aedes aegypti raising concerns for continental EU 2018. Available at: https://www.ecdc.europa.eu/en/news-events/new-settlements-aedes-aegypti-raising-concerns-continental-eu. Accessed on 05/20/2022.
[19] Sigfrid L, Reusken C, Eckerle I, Nussenblatt V, Lipworth S, Messina J, et al. Preparing clinicians for (re-)emerging arbovirus infectious diseases in Europe. Clinical Microbiology and Infection 2018;24:229–39. doi:10.1016/j.cmi.2017.05.029.
[20] Díaz-Menéndez M, de la Calle-Prieto F, Montero D, Antolín E, Vazquez A, Arsuaga M, et al. Initial experience with imported Zika virus infection in Spain. Enferm Infecc Microbiol Clin (Engl Ed) 2018;36:4–8. doi:10.1016/j.eimc.2016.08.003.
[21] Ziegler U, Lühken R, Keller M, Cadar D, van der Grinten E, Michel F, et al. West Nile virus epizootic in Germany, 2018. Antiviral Res 2019;162:39–43. doi:10.1016/j.antiviral.2018.12.005.
[22] Eckerle I, Briciu VT, Ergönül Ö, Lupşe M, Papa A, Radulescu A, et al. Emerging souvenirs-clinical presentation of the returning traveller with imported arbovirus infections in Europe. Clin Microbiol Infect 2018;24:240–5. doi:10.1016/j.cmi.2018.01.007.
[23] Funk S, Gilad E, Watkins C, Jansen VAA. The spread of awareness and its impact on epidemic outbreaks. Proc Natl Acad Sci U S A 2009;106:6872–7. doi:10.1073/pnas.0810762106.
[24] Jourdain F, Roiz D, Valk H de, Noël H, L’Ambert G, Franke F, et al. From importation to autochthonous transmission: Drivers of chikungunya and dengue emergence in a temperate area. PLOS Neglected Tropical Diseases 2020;14:e0008320. doi:10.1371/journal.pntd.0008320.
[25] WHO. Framework for a national vector control needs assessment. World Health Organization; 2017.
[26] Caputo B, Manica M. Mosquito surveillance and disease outbreak risk models to inform mosquito-control operations in Europe. Curr Opin Insect Sci 2020;39:101–8. doi:10.1016/j.cois.2020.03.009.
[27] Bragazzi NL, Bacigaluppi S, Robba C, Siri A, Canepa G, Brigo F. Infodemiological data of West-Nile virus disease in Italy in the study period 2004-2015. Data Brief 2016;9:839–45. doi:10.1016/j.dib.2016.10.022.
[28] Kumar N, Verma S, Shiba, Choudhary P, Singhania K, Kumar M. Dengue awareness and its determinants among urban adults of Rohtak, Haryana. J Family Med Prim Care 2020;9:2040–4. doi:10.4103/jfmpc.jfmpc_1203_19.
[29] Paixão MM, Ballouz T, Lindahl JF. Effect of Education on Improving Knowledge and Behavior for Arboviral Diseases: A Systematic Review and Meta-Analysis. The American Journal of Tropical Medicine and Hygiene 2019;101:441–7. doi:10.4269/ajtmh.19-0170.
[30] Mavragani A, Ochoa G. Google Trends in Infodemiology and Infoveillance: Methodology Framework. JMIR Public Health Surveill 2019;5:e13439. doi:10.2196/13439.
[31] Havelka EM, Mallen CD, Shepherd TA. Using Google Trends to assess the impact of global public health days on online health information seeking behaviour in Central and South America. J Glob Health 2020;10:010403. doi:10.7189/jogh.10.010403.
[32] Fang Y, Shepherd TA, Smith HE. Examining the Trends in Online Health Information-Seeking Behavior About Chronic Obstructive Pulmonary Disease in Singapore: Analysis of Data From Google Trends and the Global Burden of Disease Study. J Med Internet Res 2021;23:e19307. doi:10.2196/19307.
[33] Merheb S, Wang N, Weinberg J, Wang DS, Wason SEL. Online interest in surgical treatment for benign prostatic hyperplasia using Google trends. World J Urol 2021;39:2655–9. doi:10.1007/s00345-020-03445-z.
[34] Laico SA. Insights and Tracking of Pollution Awareness Using Google Trends. Journal of Health and Pollution 2018;8:180609. doi:10.5696/2156-9614-8.18.180609.
[35] Google. FAQ about Google Trends data - Trends Help 2021. Available at: https://support.google.com/trends/answer/4365533?hl=en. Accessed on 10/29/2021.
[36] Nuti SV, Wayda B, Ranasinghe I, Wang S, Dreyer RP, Chen SI, et al. The Use of Google Trends in Health Care Research: A Systematic Review. PLoS One 2014;9:e109583. doi:10.1371/journal.pone.0109583.
[37] Boehm A, Pizzini A, Sonnweber T, Loeffler-Ragg J, Lamina C, Weiss G, et al. Assessing global COPD awareness with Google Trends. Eur Respir J 2019;53:1900351. doi:10.1183/13993003.00351-2019.
[38] Mattin MJ, Solano-Gallego L, Dhollander S, Afonso A, Brodbelt DC. The frequency and distribution of canine leishmaniosis diagnosed by veterinary practitioners in Europe. Vet J 2014;200:410–9. doi:10.1016/j.tvjl.2014.03.033.
[39] Shariatpanahi SP, Jafari A, Sadeghipour M, Azadeh-Fard N, Majidzadeh-A K, Farahmand L, et al. Assessing the effectiveness of disease awareness programs: Evidence from Google Trends data for the world awareness dates. Telematics and Informatics 2017;34:904–13. doi:10.1016/j.tele.2017.03.007.
[40] Sulyok M, Richter H, Sulyok Z, Kapitány-Fövény M, Walker MD. Predicting tick-borne encephalitis using Google Trends. Ticks Tick Borne Dis 2020;11:101306. doi:10.1016/j.ttbdis.2019.101306.
[41] Sulyok M, Ferenci T, Walker M. Google Trends Data and COVID-19 in Europe: Correlations and model enhancement are European wide. Transbound Emerg Dis 2021;68:2610–5. doi:10.1111/tbed.13887.
[42] Martin LJ, Hjertqvist M, Straten E van, Bjelkmar P. Investigating novel approaches to tick-borne encephalitis surveillance in Sweden, 2010-2017. Ticks Tick Borne Dis 2020;11:101486. doi:10.1016/j.ttbdis.2020.101486.
[43] Strauss R, Lorenz E, Kristensen K, Eibach D, Torres J, May J, et al. Investigating the utility of Google trends for Zika and Chikungunya surveillance in Venezuela. BMC Public Health 2020;20:947. doi:10.1186/s12889-020-09059-9.
[44] Bender R. Introduction to the use of regression models in epidemiology. Methods Mol Biol 2009;471:179–95. doi:10.1007/978-1-59745-416-2_9.
[45] Watad A, Watad S, Mahroum N, Sharif K, Amital H, Bragazzi NL, et al. Forecasting the West Nile Virus in the United States: An Extensive Novel Data Streams-Based Time Series Analysis and Structural Equation Modeling of Related Digital Searching Behavior. JMIR Public Health Surveill 2019;5:e9176. doi:10.2196/publichealth.9176.
[46] Caputo B, Manica M, Russo G, Solimini A. Knowledge, Attitude and Practices towards the Tiger Mosquito Aedes Albopictus. A Questionnaire Based Survey in Lazio Region (Italy) before the 2017 Chikungunya Outbreak. Int J Environ Res Public Health 2020;17:E3960. doi:10.3390/ijerph17113960.
[47] Gleviczky V. Knowledge, attitude and practices concerning dengue fever in South of France: a quantitative study. 2019.
[48] Gamboa J, Lamb MM, de la Cruz P, Bull S, Olson D. Using social media to increase preventative behaviors against arboviral diseases: a pilot study among teens in the Dominican Republic. Mhealth 2019;5:30. doi:10.21037/mhealth.2019.07.03.
[49] World Bank. Population, total - OECD members | Data 2021. Available at: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=OE. Accessed on 01/15/2022.
[50] World Bank. GDP per capita, PPP (current international $) | Data 2021. Available at: https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD. Accessed on 01/16/2022.
[51] Google Developers Datasets. Countries Coordinated | Dataset Publishing Language. Google Developers 2012. Available at: https://developers.google.com/public-data/docs/canonical/countries_csv. Accessed on 01/27/2022.
[52] Eurostat Data Explorer. Health care expenditure by function | Statistics | Eurostat HLTH_SHA11_HC 2021. Available at: https://ec.europa.eu/eurostat/databrowser/view/HLTH_SHA11_HC__custom_1939498/default/table. Accessed on 01/27/2022.
[53] Eurostat Data Explorer. Foreign-born population, Eurostat Dataset TPS00178 2021. Available at: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=tps00178&lang=en. Accessed on 01/27/2022.
[54] StataCorp. Stata Statistical Software: Release 17 2021.
[55] StataCorp. Stata Manual - Linear regression. 2020.
[56] Greene WH. Econometric Analysis. 8th ed. New York: Pearson; 2018.
[57] Prais SJ, Winsten CB. Trend estimators and serial correlation. Cowles Commission Discussion Paper 1954;Stat. No. 383.
[58] StataCorp. Stata Manual - Linear regression with panel-corrected standard errors. 2022.
[59] Esser HJ, Mögling R, Cleton NB, van der Jeugd H, Sprong H, Stroo A, et al. Risk factors associated with sustained circulation of six zoonotic arboviruses: a systematic review for selection of surveillance sites in non-endemic areas. Parasit Vectors 2019;12:265. doi:10.1186/s13071-019-3515-7.
[60] Thum M. Spring marks the beginning of tick season. Public Health Command Europe 2021. Available at: https://www.army.mil/article/243643/spring_marks_the_beginning_of_tick_season. Accessed on 05/14/2022.
[61] Rosà R, Marini G, Bolzoni L, Neteler M, Metz M, Delucchi L, et al. Early warning of West Nile virus mosquito vector: climate and land use models successfully explain phenology and abundance of Culex pipiens mosquitoes in north-western Italy. Parasites & Vectors 2014;7:269. doi:10.1186/1756-3305-7-269.
[62] Jensen PM, Danielsen F, Skarphedinsson S. Monitoring Temporal Trends in Internet Searches for “Ticks” across Europe by Google Trends: Tick-Human Interaction or General Interest? Insects 2022;13:176. doi:10.3390/insects13020176.
[63] Rosenstock IM. Why people use health services. Milbank Mem Fund Q 1966;44:Suppl:94-127.
[64] Rosenstock IM. The health belief model: Explaining health behavior through expectancies. Health behavior and health education: Theory, research, and practice, Hoboken, NJ, US: Jossey-Bass/Wiley; 1990, pp. 39–62.
[65] Glanz K, Rimer BK, Viswanath K. Health behavior and health education: theory, research, and practice. 4th ed. Jossey-Bass; 2008.
[66] Bond L, Nolan T. Making sense of perceptions of risk of diseases and vaccinations: a qualitative study combining models of health beliefs, decision-making and risk perception. BMC Public Health 2011;11:943. doi:10.1186/1471-2458-11-943.
[67] Gluskin RT, Johansson MA, Santillana M, Brownstein JS. Evaluation of Internet-Based Dengue Query Data: Google Dengue Trends. PLOS Neglected Tropical Diseases 2014;8:e2713. doi:10.1371/journal.pntd.0002713.
[68] Alicino C, Bragazzi NL, Faccio V, Amicizia D, Panatto D, Gasparini R, et al. Assessing Ebola-related web search behaviour: insights and implications from an analytical study of Google Trends-based query volumes. Infectious Diseases of Poverty 2015;4:54. doi:10.1186/s40249-015-0090-9.
[69] Cook S, Conrad C, Fowlkes AL, Mohebbi MH. Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic. PLoS One 2011;6:e23610. doi:10.1371/journal.pone.0023610.
[70] Althouse BM, Ng YY, Cummings DAT. Prediction of dengue incidence using search query surveillance. PLoS Neglected Tropical Diseases 2011;5. doi:10.1371/journal.pntd.0001258.
[71] Cervellin G, Comelli I, Lippi G. Is Google Trends a reliable tool for digital epidemiology? Insights from different clinical settings. J Epidemiol Glob Health 2017;7:185–9. doi:10.1016/j.jegh.2017.06.001.
[72] Husnayain A, Fuad A, Lazuardi L. Correlation between Google Trends on dengue fever and national surveillance report in Indonesia. Glob Health Action 2019;12:1552652. doi:10.1080/16549716.2018.1552652.
[73] Braack L, Gouveia de Almeida AP, Cornel AJ, Swanepoel R, de Jager C. Mosquito-borne arboviruses of African origin: review of key viruses and vectors. Parasites & Vectors 2018;11:29. doi:10.1186/s13071-017-2559-9.
[74] WHO. Zika virus disease outbreak 2015-2016 2022. Available at: https://www.who.int/emergencies/situations/zika-virus-outbreak. Accessed on 03/11/2022.
[75] ECDC. Zika virus disease in Var department, France. 2019.
[76] Brady OJ, Hay SI. The first local cases of Zika virus in Europe. The Lancet 2019;394:1991–2. doi:10.1016/S0140-6736(19)32790-4.
[77] Ajbar A, Shepherd TA, Robinson M, Mallen CD, Prior JA. Using Google Trends to assess the impact of Global Public Health Days on online health information-seeking behaviour in Arabian Peninsula. Journal of the Egyptian Public Health Association 2021;96:4. doi:10.1186/s42506-020-00063-w.
[78] Allgoewer K, Maity S, Zhao A, Lashua L, Ramgopal M, Balkaran BN, et al. New Proteomic Signatures to Distinguish Between Zika and Dengue Infections. Mol Cell Proteomics 2021;20:100052. doi:10.1016/j.mcpro.2021.100052.
[79] Hampel J. Different concepts of risk -- a challenge for risk communication. Int J Med Microbiol 2006;296 Suppl 40:5–10. doi:10.1016/j.ijmm.2005.12.002.
[80] Savulescu J, Kahane G. The moral obligation to create children with the best chance of the best life. Bioethics 2009;23:274–90. doi:10.1111/j.1467-8519.2008.00687.x.
[81] Lozano S, Day J, Ortega L, Silver M, Connelly R. Perceived Risk of Mosquito-Borne Arboviruses in the Continental United States. Pathogens 2021;10:1562. doi:10.3390/pathogens10121562.
[82] Ziegler U, Santos PD, Groschup MH, Hattendorf C, Eiden M, Höper D, et al. West Nile Virus Epidemic in Germany Triggered by Epizootic Emergence, 2019. Viruses 2020;12:448. doi:10.3390/v12040448.
[83] Research Network Zoonotic Infectious Diseases. Ticks and their souvenirs: Record number of TBE cases in 2020 | Nationale Forschungsplattform für Zoonosen 2021. Available at: https://zoonosen.net/en/ticks-and-their-souvenirs-record-number-tbe-cases-2020. Accessed on 05/16/2022.
[84] Lu FS, Hattab MW, Clemente CL, Biggerstaff M, Santillana M. Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches. Nat Commun 2019;10:147. doi:10.1038/s41467-018-08082-0.
[85] Schielein L, Tizek L, Biedermann T, Zink A. Tick bites in different professions and regions: pooled cross-sectional study in the focus area Bavaria, Germany. BMC Public Health 2022;22:234. doi:10.1186/s12889-021-12456-3.
[86] Zubriková D, Wittmann M, Hönig V, Švec P, Víchová B, Essbauer S, et al. Prevalence of tick-borne encephalitis virus and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks in Lower Bavaria and Upper Palatinate, Germany. Ticks and Tick-Borne Diseases 2020;11:101375. doi:10.1016/j.ttbdis.2020.101375.
[87] Friedsam AM, Brady OJ, Pilic A, Dobler G, Hellenbrand W, Nygren TM. Geo-Spatial Characteristics of 567 Places of Tick-Borne Encephalitis Infection in Southern Germany, 2018-2020. Microorganisms 2022;10:643. doi:10.3390/microorganisms10030643.
[88] Bancroft D, Power GM, Jones RT, Massad E, Iriat JB, Preet R, et al. Vector control strategies in Brazil: a qualitative investigation into community knowledge, attitudes and perceptions following the 2015-2016 Zika virus epidemic. BMJ Open 2022;12:e050991. doi:10.1136/bmjopen-2021-050991.
[89] Rakhmani AN, Limpanont Y, Kaewkungwal J, Okanurak K. Factors associated with dengue prevention behaviour in Lowokwaru, Malang, Indonesia: a cross-sectional study. BMC Public Health 2018;18:619. doi:10.1186/s12889-018-5553-z.
[90] Clancy IL, Jones RT, Power GM, Logan JG, Iriart JAB, Massad E, et al. Public health messages on arboviruses transmitted by Aedes aegypti in Brazil. BMC Public Health 2021;21:1362. doi:10.1186/s12889-021-11339-x.
[91] Reusken C, Baronti C, Mögling R, Papa A, Leitmeyer K, Charrel RN. Toscana, West Nile, Usutu and tick-borne encephalitis viruses: external quality assessment for molecular detection of emerging neurotropic viruses in Europe, 2017. Eurosurveillance 2019;24:1900051. doi:10.2807/1560-7917.ES.2019.24.50.1900051.
[92] Cadar D, Maier P, Müller S, Kress J, Chudy M, Bialonski A, et al. Blood donor screening for West Nile virus (WNV) revealed acute Usutu virus (USUV) infection, Germany, September 2016. Euro Surveill 2017;22:30501. doi:10.2807/1560-7917.ES.2017.22.14.30501.
[93] Klempa B. Hantaviruses and climate change. Clin Microbiol Infect 2009;15:518–23. doi:10.1111/j.1469-0691.2009.02848.x.
[94] Srikiatkhachorn A, Spiropoulou CF. Vascular events in viral hemorrhagic fevers: a comparative study of dengue and hantaviruses. Cell Tissue Res 2014;355:621–33. doi:10.1007/s00441-014-1841-9.
[95] Google Trends. Orthohantavirus (Topic) Google Trends results. Google Trends 2022. Available at: https://trends.google.com/trends/explore?date=all&q=%2Fm%2F025vss. Accessed on 05/03/2022.
[96] ECDC. Disease data from ECDC Surveillance Atlas - hantavirus. European Centre for Disease Prevention and Control 2022. Available at: https://www.ecdc.europa.eu/en/hantavirus-infection/surveillance-and-disease-data/atlas. Accessed on 05/03/2022.
[97] Griffin A. Misleading WhatsApp messages about “hantavirus” spread fear amid coronavirus panic. The Independent 2020. Available at: https://www.independent.co.uk/tech/hantavirus-whatsapp-twitter-truth-coronavirus-covid-19-rat-mice-a9422211.html. Accessed on 05/03/2022.
[98] Holroyd M. Debunked: Claims a new virus has emerged from China are false. Euronews 2020. Available at: https://www.euronews.com/my-europe/2020/04/01/debunked-claims-a-new-virus-has-emerged-from-china-are-false. Accessed on 05/03/2022.