Screening and isolation of microbes from a Mud Community of Ischia Island Thermal Springs: preliminary analysis of a bioactive compound
pdf

Keywords

microbial diversity, thermal springs, Ischia island, antimicrobial activity, antibiofilm activity

Abstract

Introduction: Balneotherapy centers of Ischia island (Italy) offer treatments for different dermatological diseases (psoriasis, acne, atopic dermatitis) and upper respiratory tract infections. In this study, we integrated morphological and molecular approaches to give bacterial diversity of microbial mat samples collected from the thermae of Ischia.

Methods: Samples were collected during 2019 at four sites. Some bacterial strains ATCC for antibacterial and antibiofilm Activity were tested. After morphological characterization, screening for antagonistic isolates was made. The colonies isolated from thermal mud samples were submitted to molecular characterization. Susceptibility testing by dilution spotting was carried out and antibacterial efficacies of most active isolate were evaluated with a Minimal inhibition concentration assay. Biofilm formation, inhibition, eradication were examined. Statistical analyses were carried out utilizing Microsoft® Excel 2016/XLSTAT©-Pro.

Results: We isolated a natural compound with antimicrobial and antibiofilm activities.

Conclusions: The results obtained in this study are discussed in the context of how hydrothermal systems are important environmental source of uncharted antimicrobial and antibiofilm compounds. This is, to our knowledge, the first view of a spring water microbiome analysis of Ischia.

https://doi.org/10.15167/2421-4248/jpmh2021.62.2.1792
pdf

References

1. Jackson R. Waters and spas in the classical world. Med Hist 1990; 10: 1–13. doi:10.1017/s0025727300070952
2. Delfino M, Russo N, Migliaccio G, Carraturo N. Experimental study on efficacy of thermal muds of Ischia Island combined with balneotherapy in the treatment of psoriasis vulgaris with plaques. Clin Ter 2003; 154 (3): 167–171. PMID: 12910806.
3. BUR. Regolamento d’Uso del Marchio Collettivo d’Origine Fango D.O.C.—Thermae Abano Montegrotto—Regione Veneto; venerdì 27 marzo 2015. Anno XLVI–N. 30; Bollettino Ufficiale Regione del Veneto: Venezia, Italy, 2015; pp. 33–81
4. Andreoli C, Rascio N. The Algal Flora in the Thermal Baths of Montegrotto Terme (Padua). Its Distribution Over One-Year Period. Int Rev Hydrobiol 1975; 60: 857–871. https://doi.org/10.1002/iroh.19750600606
5. Bruno A, Rossi C, Marcolongo G, Di Lena A, Venzo A, Berrie CP, Corda D. Selective In Vivo Anti-Inflammatory Action of the Glactolipid Monogalactosyldiacylglycerol. Eur J Pharmacol 2005; 524: 159–168. doi: 10.1016/j.ejphar.2005.09.023
6. Ulivi V, Lenti M, Gentili C, Marcolongo G, Cancedda R, Descalzi Cancedda F. Anti-inflammatory activity of monogalactosyldiacylglycerol in human articular cartilage in vitro: activation of an anti-inflammatory cyclooxygenase-2 (COX-2) pathway. Arthritis Res Ther 2011; 13 (3): R92. doi:10.1186/ar3367
7. Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N. Influence of Light and Temperature on Growth and High-Value Molecules Productivity from Cyanobacterium aponinum. J Appl Phycol 2017; 29: 1781–1790. https://doi.org/10.1007/s10811-017-1133-3
8. Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VJ, Prasad SM. Uncovering Potential Applications of Cyanobacteria and Algal Metabolites in Biology, Agriculture and Medicine: Current Status and Future Prospects. Front Microbiol 2017; 8: 515. doi:10.3389/fmicb.2017.00515
9. Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019; 17 (6): 320. doi:10.3390/md17060320
10. Giorgio A, Carraturo F, Aliberti F, De Bonis S, Libralato G, Morra M, Guida M. Characterization of microflora composition and antimicrobial activity of algal extracts from italian thermal muds. J Nat Sc Biol Med 2018; 9: 150-8. doi:10.4103/jnsbm.JNSBM_237_17
11. Zampieri RM, Adessi A, Caldara F, Codato A, Furlan M, Rampazzo C, De Philippis R, La Rocca N, Dalla Valle L. Anti-Inflammatory Activity of Exopolysaccharides from Phormidium sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model. Biomolecules 2020; 10 (4): E582. doi:10.3390/biom10040582
12. Casillo A, Lanzetta R, Parrilli M, Corsaro MM. Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Mar Drugs 2018; 16 (2): 69. doi:10.3390/md16020069
13. Huang Q, Dong CZ, Dong RM, Jiang H, Wang S, Wang G, Fang B, Ding X, Niu L, Li X, Zhang C, Dong H. Archaeal and bacterial diversity in hot springs on the Tibetan Plateau, China. Extremophiles 2011; 15 (5): 549–563. doi:10.1007/s00792-011-0386-z
14. Ivanov IG, Bachvarov DR. Determination of plasmid copy number by the "boiling" method. Anal Biochem 1987; 165 (1): 137‐141. doi:10.1016/0003-2697(87)90211-9
15. Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 2007, 69 (2): 330‐339. doi:10.1016/j.mimet.2007.02.005
16. Carraturo F, Gargiulo G, Giorgio A, Aliberti F, Guida M. Prevalence, Distribution, and Diversity of Salmonella spp. in Meat Samples Collected from Italian Slaughterhouses. J Food Sci 2016; 81 (10): M2545‐M2551. doi:10.1111/1750-3841.13430
17. Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 2002; 68: 3878–85. doi:10.1128/aem.68.8.3878-3885.2002
18. Galdiero E, Siciliano A, Gesuele R, Di Onofrio V, Falanga A, Maione A, Liguori R, Libralato G, Guida M. Melittin Inhibition and Eradication Activity for Resistant Polymicrobial Biofilm Isolated from a Dairy Industry after Disinfection. Int J Microbiol 2019; 2019: 4012394. doi:10.1155/2019/4012394
19. Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115 (8). 891‐899. doi:10.1111/j.1600-0463.2007.apm_630.x
20. Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17 (12): 656. doi:10.3390/md17120656
21. Ibrar M, Ullah MW, Manan S, Farooq U, Rafiq M, Hasan F. Fungi from the extremes of life: an untapped treasure for bioactive compounds. Appl Microbiol Biotechnol 2020; 104 (7): 2777‐2801. doi:10.1007/s00253-020-10399-0
22. Dopson M, Ni G, Sleutels TH. Possibilities for extremophilic microorganisms in microbial electrochemical systems. FEMS Microbiol Rev 2016; 40 (2): 164‐181. doi:10.1093/femsre/fuv044
23. Canganella F; Wiegel J. Anaerobic thermophiles. Life (Basel) 2014; 4 (1): 77‐104. doi:10.3390/life4010077
24. Urbieta MS, Porati GW, Segretín AB, González-Toril E, Giaveno MA, Donati ER. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity. Microorganisms 2015; 3 (3): 344‐363. doi:10.3390/microorganisms3030344
25. Cole JK, Peacock JP, Dodsworth JA, Williams AJ, Thompson DB, Dong H, Wu G, Hedlund BP. Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J 2013; 7 (4): 718‐729. doi:10.1038/ismej.2012.157
26. Pagaling E, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S. Bacterial and archaeal diversity in two hot spring microbial mats from the geothermal region of Tengchong, China. Extremophiles 2012; 16 (4): 607‐618. doi:10.1007/s00792-012-0460-1
27. Sakil Munna M, Tahera J, Mohibul Hassan Afrad M, Nur IT, Noor R. Survival of Bacillus spp. SUBB01 at high temperatures and a preliminary assessment of its ability to protect heat-stressed Escherichia coli cells. BMC Res Notes 2015; 8: 637. doi:10.1186/s13104-015-1631-9
28. Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL. Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 2009; 75 (4): 981‐990. doi:10.1128/AEM.01652-08
29. Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S. Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Scientific. World Journal 2014; 493548. doi:10.1155/2014/493548
30. Gudiña EJ, Rocha V, Teixeira JA, Rodrigues LR. Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 2010; 50 (4): 419‐424. doi:10.1111/j.1472-765X.2010.02818.x
31. Sharma D, Saharan BS. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol Rep (Amst) 2016; 11: 27‐35. doi:10.1016/j.btre.2016.05.001