The paleopathological evidence on the origins of human tuberculosis: a review


tuberculosis, paleopathology, history, Neolithic, aDNA


Tuberculosis (TB) has been one of the most important infectious diseases affecting mankind and still represents a plague on a global scale. In this narrative review, the origins of tuberculosis are outlined, according to the evidence of paleopathology. In particular, the first cases of human TB in ancient skeletal remains are presented, together with the most recent discoveries resulting from the paleomicrobiology of the tubercle bacillus, which provide innovative information on the history of TB. The paleopathological evidence of TB attests the presence of the disease starting from Neolithic times. Traditionally, it was thought that TB has a zoonotic origin, being acquired by humans from cattle during the Neolithic revolution. However, the biomolecular studies proposed a new evolutionary scenario demonstrating that human TB has a human origin. The researches show that the disease was present in the early human populations of Africa at least 70000 years ago and that it expanded following the migrations of Homo sapiens out of Africa, adapting to the different human groups. The demographic success of TB during the Neolithic period was due to the growth of density and size of the human host population, and not the zoonotic transfer from cattle, as previously hypothesized. These data demonstrate long coevolution of the disease and its human host. Understanding the changes of TB through time thanks to the advances in the field of paleopathology can help to solve the problems of the present and understand the future evolution of TB.


[1] Brites D, Gagneux S. Co-evolution of Mycobacterium tuberculosis and Homo sapiens. Immunol Rev. 2015;264:6–24. doi: 10.1111/imr.12264.
[2] Donoghue ED. Palaeomicrobiology of Tuberculosis. In: Raoult D, Drancourt M, editors. Paleomicrobiology – Past Human Infections. Berlin/Heidelberg: Springer-Verlag; 2008. p. 75-97.
[3] Roberts CA, Buikstra J. The bioarchaeology of tuberculosis: a global view on a reemerging disease. Gainesville, Florida: University Press of Florida; 2003.
[4] Glaziou P, Floyd K, Raviglione MC. Global epidemiology of tuberculosis. Semin Respir Crit Care Med. 2018;39:271-285. doi: 10.1055/s-0038-1651492.
[5] Kaufmann SH. Tuberculosis vaccines: time to think about the next generation. Semin Immunol 2013;25172–181. doi: 10.1016/j.smim.2013.04.006.
[6] Bañuls A-L, Sanou A, Anh NT, Godreuil S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol. 2015;64:1261-1269. doi: 10.1099/jmm.0.000171.
[7] Waldron T. Palaeopathology. Cambridge: Cambridge University Press; 2009.
[8] Donoghue ED. Paleomicrobiology of human tuberculosis. Microbiol Spectr. 2016;4. doi: 10.1128/microbiolspec.PoH-0003-2014.
[9] Resnick D, Niwayama G. Diagnosis of bone and joint disorders. 4th ed. Philadelphia: Saunders; 2002.
[10] Aufderheide A, Rodriguez-Martin C. The Cambridge encyclopaedia of human palaeopathology. Cambridge: Cambridge University Press; 1998.
[11] Kappelman J, Alcicek MC, Kazanci N, Schultz M, Ozkul M, Sen S. First Homo erectus from Turkey and implications for migrations into temperate Eurasia. Am J Phys Anthropol. 2008;135:110-6.
[12] Roberts CA, Pfister LA, Mays S. Letter to the editor: was tuberculosis present in Homo erectus in Turkey? Am J Phys Anthropol. 2009;139:442-4.
[13] Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D. Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis. 2001;33:305-11.
[14] Baker O, Lee OY, Wu HT, Besra GS, Minnikin DE, Llewellyn G, Williams CM, Maixner F, O’Sullivan N, Zink A, Chamel B, Khawam R, Coqueugniot E, Helmer D, Le Mort F, Perrin P, Gourichon L, Dutailly B, Palfi G, Coqueugniot H, Dutour O. Human tuberculosis predates domestication in ancient Syria. Tuberculosis (Edinb) 2015;95:S4–S12. doi: 10.1016/
[15] Al-Sarie I, Al-Shiyab A, El-Najjar M. Cases of tuberculosis at 'Ain Ghazal, Jordan. Paléorient 1996;22:123-128.
[16] Hershkovitz I, Donoghue HD, Minnikin DE, Besra GS, Lee OY-C, Gernaey AM, Galili E, Greenblatt CL, Lemma E, Bar-Gal GK, Spigelman M. Detection and molecular characterization of 9000-year-old Mycobacterium tuberculosis from a Neolithic settlement in the eastern Mediterranean. PLoS One 2008;3(10):e3426. doi: 10.1371/journal.pone.0003426.
[17] Hershkovitz I, Donoghue HD, Minnikin DE, May H, Lee OY, Feldman M, Galili E, Spigelman M, Rothschild BM, Bar-Gal GK. 2015. Tuberculosis origin: the Neolithic scenario. Tuberculosis (Edinb) 95 Suppl 1:S122-6. doi: 10.1016/
[18] Nicklisch N, Maixner F, Ganslmeier R, Friederich S, Dresely V, Meller H, Zink A, Alt KW. Rib lesions in skeletons from early neolithic sites in Central Germany: On the trail of tuberculosis at the onset of agriculture. Am J Phys Anthropol. 2012;149:391-404. doi: 10.1002/ajpa.22137.
[19] Bartels P. Tuberkulose in der jüngeren Steinzei. ArchAnthropol. 1907;6:243-255.
[20] Gladykowska-Rzeczycka JJ. Tuberculosis in the past and present in Poland. In: Pálfi G, Dutour O, Deák J, Hutás I, editors. Tuberculosis: past and present. Budapest/Szeged: Golden Book Publishers and Tuberculosis Foundation; 1999. p. 561-73.
[21] Masson M, Molnár E, Dononghue HD, Minnikin DE, Lee OY, Besra GS, Bull ID, Pálfi G. 7000-year-old tuberculosis cases from Hungary: osteological and biomolecular evidence. Tuberculosis (Edinb) 2015;95 Suppl 1: S13-7.
[22] Köhler K, Pálfi G, Molnar E, Zalai-Gaál I, Osztás A, Bánffy E, Kirinó K, Kiss KK, Mende BG. A Late Neolithic Case of Pott's Disease from Hungary. Int J Osteoarchaeol. 2012;2 4:697-703. doi:10.1002/oa.2254.
[23] Pósa A, Maixner F, Mende BG, Köhler K, Osztás A, Sola C, Dutour O, Masson M, Molnár E, Pálfi G, Zink A. Tuberculosis in Late Neolithic-Early Copper Age human skeletal remains from Hungary. Tuberculosis (Edinb) 2015;95 Suppl.1:S18-22. doi: 10.1016/
[24] Canci A, Minozzi S, Borgognini Tarli S. New evidence of tuberculousspondylitis from Neolithic Liguria (Italy). Int J Osteoarchaeol. 1996;6:497–501.
[25] Formicola V, Milanesi Q, Scarsini C. Evidence of spinal tuberculosis at thebeginning of the fourth millennium BC from Arene Candide cave (Liguria,Italy). Am J Phys Anthropol. 1987;72:1–6.
[26] Sparacello VS, Roberts CA, Kerudin A, Müller R. A 6500-year-old Middle Neolithic child from Pollera Cave (Liguria,Italy) with probable multifocal osteoarticular tuberculosis. Int J Paleopath. 2017;17:67-74. doi: 10.1016/j.ijpp.2017.01.004.
[27] Crubézy E, Ludes B, Poveda JD, Clayton J, Crouau-Roy B, Montagnon D. Identification of Mycobacterium DNA in an Egyptian Pott’s disease of 5,400 years old. C R Acad Sci III. 1998;321:941-51.
[28] Zink A, Haas CJ, Reischl U, Szeimies U, Nerlich AG. Molecular analysis of skeletal tuberculosis in an ancient Egyptian population. J Med Microbiol. 2001;50:355–366.
[29] Nerlich AG, Rohrbach H, Zink A. Paleopathology of ancient Egyptian mummies and skeletons. Investigations on the occurrence and frequency of specific diseases during various time periods in the necropolis of Thebes‐West. Pathologe 2002;23:379– 85.
[30] Zink AR, Sola C, Reischl U, Grabner W, Rastogi N, Wolf H, Nerlich AG. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. J Clin Microbiol. 2003;41:359– 67. DOI: 10.1128/JCM.41.1.359-367.2003.
[31] Lalremruata A, Ball M, Bianucci R, Welte B, Nerlich AG, Kun JF, Pusch CM. Molecular identification of falciparum malaria and human tuberculosis co‐infections in mummies from the Fayum depression (Lower Egypt). PLoS One 2013;8(4):e60307.
[32] Okazaki K, Takamuku H, Yonemoto S, Itahashi Y, Lakuhari T, Yoneda M, Chen J. A paleopathological approach to early human adaptation for wet-rice agriculture: the first case of Neolithic spinal tuberculosis at the Yangtze River delta of China. Int J Paleopathol. 2019;24:236-244.
[33] Roberts CA, Buikstra JE. The history of tuberculosis from earliest times to the development of drugs. In: Davies PDO, Gordon SB, Davies G. Clinical Tuberculosis. Lonon: CRC Press; 2014.
[34] Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514(7523):494-7. doi: 10.1038/nature13591.
[35] Holloway KL, Henneberg RJ, de Barros Lopez M, Henneberg. Evolution of human tuberculosis: a systematic review and meta-analysis of paleopathological evidence. Homo 2011;2011:402-458.
[36] Rivera-Perez JI, Santiago-Rodriguez TM, Toranzos GA. Paleomicrobiology: a snapshot of ancient microbes and approaches to forensic microbiology. Microbiol Spectr. 2016;4(4). doi: 10.1128/microbiolspec.EMF-0006-2015.
[37] Barbier M, Wirth T. The evolutionary history, demography, and spread of the Mycobacterium tuberculosis complex. 2016. Microbiol Spectr 4. doi: 10.1128/microbiolspec.TBTB2-0008-2016.
[38] Steinbock RT. Paleopathological Diagnosis and Interpretation: Bone Diseases in Ancient Human Populations. Springfield, Illinois: Charles C. Thomas; 1976.
[39] Manchester K. Tuberculosis and leprosy in antiquity: an interpretation. Med Hist. 1984;28:22-30.
[40] Clark GA, Kelley MA, Granje JM, Hill CM. The evolution of mycobacterial disease in human populations. Curr Anthropol. 1987;28:45-62.
[41] Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaïs B, Marmiesse M, Supply P, Vincent V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005;1:e5.
[42] Wirth T, Hildebrand F, Allix-Béguec C, Wölbeling F, Kubica T, Kremer K, van Soolingen D, Rüsch-Gerdes S, Locht C, Brisse S, Meyer A, Supply P, Niemann S. Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog. 2008;4: 20084, e1000160. doi: 10.1371/journal.ppat.1000160.
[43] Hershberg R, Lipatov M, Small PM, Sheffer H, Niemann S, Homolka S, Roach JC, Kremer K, Petrov DA, Feldman MW, Gagneux S. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PloS Biol. 2008;6:e311. doi: 10.1371/journal.pbio.0060311.
[44] Gagneux S, Small PM. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis. 2007; 7:328–337.
[45] Firdessa R, Berg S, Hailu E, Schelling E, Gumi B, Erenso G, Gadisa E, Kiros T, Habtamu M, Hussein J, Zinsstag J, Robertson BD, Ameni G, Lohan AJ, Loftus B, Comas I, Gagneux S, Tschopp R, Yamuah L, Hewinson G, Gordon SV, Young DB, Aseffa A. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19:460–463. doi: 10.3201/eid1903.120256.
[46] Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, van Soolingen D, Cole ST. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U.S.A. 2002;99:3684–3689. DOI: 10.1073/pnas.052548299.
[47] Gagneux S. Host-pathogen coevolution in human tuberculosis. Philos Trans R Soc Lond B Biol Sci. 2012;367:850–859. doi: 10.1098/rstb.2011.0316.
[48] Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato- Maeda M, Parkhill J, Malla B, Berg S, Thwaites G, Yeboah-Manu D, Bothamley G, Mei J, Wei L, Bentley S, Harris SR, Niemann S, Diel R, Aseffa A, Gao Q, Young D, Gagneux S. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–1182. doi: 10.1038/ng.2744.