
E142

J PREV MED HYG 2022; 63(SUPPL. 3): E142-E149 OPEN ACCESS   

https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2755

Precision nutrition is an emerging branch of nutrition science that 
aims to use modern omics technologies (genomics, proteomics, and 
metabolomics) to assess an individual’s response to specific foods or 
dietary patterns and thereby determine the most effective diet or life-
style interventions to prevent or treat specific diseases. Metabolomics 
is vital to nearly every aspect of precision nutrition. It can be targeted 
or untargeted, and it has many applications. Indeed, it can be used 
to comprehensively characterize the thousands of chemicals in foods, 
identify food by-products in human biofluids or tissues, characterize 
nutrient deficiencies or excesses, monitor biochemical responses to 

dietary interventions, track long- or short-term dietary habits, and 
guide the development of nutritional therapies. Indeed, metabolomics 
can be coupled with genomics and proteomics to study and advance 
the field of precision nutrition. Integrating omics with epidemiolog-
ical and clinical data will begin to define the beneficial effects of 
human food metabolites. In this review, we present the metabolome 
and its relationship to precision nutrition. Moreover, we describe the 
different techniques used in metabolomics and present how metabo-
lomics has been applied to advance the field of precision nutrition by 
providing notable examples and cases. 

Review

Metabolomics application for the design  
of an optimal diet

ZAKIRA NAUREEN1, SIMONE CRISTONI2, KEVIN DONATO1,*, MARIA CHIARA MEDORI3, MICHELE SAMAJA4, 
KAREN L. HERBST5, BARBARA AQUILANTI6, VALERIA VELLUTI6, GIUSEPPINA MATERA6, FRANCESCO FIORETTI7, 

AMERIGO IACONELLI6, MARCO ALFONSO PERRONE8, LORENZO DI GIULIO9, EMANUELE GREGORACE8, 
PIETRO CHIURAZZI10,11, SAVINA NODARI7, STEPHEN THADDEUS CONNELLY12, MATTEO BERTELLI1,3,5,13

1 MAGI EUREGIO, Bolzano, Italy; 2 ISB Ion Source & Biotechnologies srl, Italy, Bresso, Milano, Italy; 3 MAGI’S LAB, Rovereto 
(TN), Italy; 4 MAGI Group, San Felice del Benaco, Brescia, Italy; 5 Total Lipedema Care, Beverly Hills California and Tucson Arizona, 

USA;  6 UOSD Medicina Bariatrica, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy; 7 Department of Cardiology, 
University of Brescia and ASST “Spedali Civili” Hospital, Brescia, Italy; 8 Department of Cardiology and CardioLab,  

University of Rome Tor Vergata, Rome, Italy; 9 Department of Vascular Surgery, University of Rome Tor Vergata, Rome Italy;  
10 Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy; 11 UOC Genetica Medica, Fondazione Policlinico 

Universitario “A. Gemelli” IRCCS, Rome, Italy; 12 San Francisco Veterans Affairs Health Care System, Department of Oral 
& Maxillofacial Surgery, University of California, San Francisco, CA, USA; 13 MAGISNAT, Peachtree Corners (GA), USA

Keywords

Metabolomics • Mediterranean diet • Precision nutrition • Food metabolome • NMR

Summary

Introduction

Metabolomics is the study of small metabolites – such 
as amino acids, nucleic acids, lipids, or carbohydrates – 
and complex secondary metabolites present in biologi-
cal systems inside the cells or extracellular fluids. Me-
tabolomics uses analytical techniques, such as liquid 
or gas chromatography (LC or GC), mass spectrom-
etry (MS), liquid chromatography-mass spectrometry 
(LC-MS), Fourier transformed infra-red spectroscopy 
(FTIR), and nuclear magnetic resonance (NMR) spec-
troscopy to create metabolomic profiles that enable 
identification and relative quantification of metabolites 
at a given time [1]. Metabolomic profiles are simply 
the secondary metabolites produced under extra- and 
intracellular environmental conditions. Qualitative and 
quantitative metabolomics compares and identifies 
specific metabolites produced under specific stimuli 
and generates metabolomic profiles based on various 
statistical methods. Metabolomics is becoming in-
creasingly popular in nutritional research and provides 
a wealth of biological data, dependent upon intake of 
a specific diet, dietary pattern, age, gender, lifestyle, 
and health status [2]. Metabolomic approaches are de-

ployed in nutritional research for the identification of 
metabolites in human bodies in response to certain di-
etary food regimens [3, 4], and the resulting metabolo-
mic profiles are used to design personalized dietary and 
lifestyle interventions to improve overall health. 

Precision nutrition

Precision nutrition is one of the most promising branch-
es of nutritional sciences, combining genomics, pro-
teomics, and metabolomics to identify an individual’s 
metabotype and response to their dietary intake and life-
style pattern [5]. Based on an individual’s metabotype, 
tailor-made dietary regimes and physical activity plans 
are suggested to prevent or cure specific pathophysio-
logical condition [6]. In addition, metabolomics is used 
to characterize thousands of chemical constituents of 
foods, to monitor biochemical response to specific food 
intake, to recognise food by-products in human tissues 
or biofluids, to identify nutrient deficiencies, to track di-
etary habits, and to devise nutritional regimes based on 
all obtained data [7, 8].

https://doi.org/10.15167/2421-4248/jpmh2022.63.2S3.2755


METABOLOMICS APPLICATION FOR THE DESIGN OF AN OPTIMAL DIET

E143

Metabolomics and Nutritional Science

Metabolomics is the branch of analytical chemistry that 
studies metabolites, which are small biological mole-
cules (molecular weight under 1,500 Da) found in cells, 
tissues, and/or biological fluids. Metabolomics is differ-
ent than other omics sciences because it uses a variety 
of sophisticated instrumentation to obtain detailed infor-
mation about metabolites. In contrast, transcriptomics, 
proteomics, or genomics are single instrument-based 
techniques, and therefore metabolomics provides a bet-
ter insight into biological data [9]. Over the past decade, 
three main spectroscopic techniques have emerged as 
well-known metabolomics pillars: nuclear magnetic 
resonance (NMR), gas chromatography-mass spectrom-
etry (GC-MS), and liquid chromatography-mass spec-
trometry (LC-MS) [10]. NMR identifies and quantifies 
high-abundance molecules, whereas the other two tech-
niques are good at quantifying and detecting low-abun-
dance metabolite molecules [11]. Overall, these spectro-
scopic techniques are the backbone for the identification 
of organic compounds, such as amino acids, lipids, or-
ganic acids, and amines. The myriad of literature avail-
able on metabolomics studies using these sensitive ana-
lytical advanced techniques authenticates their sophisti-
cation and diversity [10-12].

Targeted and untargeted metabolomics
Generally, metabolomics approaches are classified as 
targeted and untargeted. As stated by its name, targeted 
metabolomics deals with the identification of selected 
metabolites via cross comparison with their known stan-
dards, which in turn facilitates in developing biomarkers 
or hypotheses testing [13]. On the other hand, untargeted 
metabolomics mainly focuses on the discovery of novel, 
yet unknown compounds [14]. Given the high demand 
and rapidly growing interest in the identification and 
quantification of biologically active compounds, target-
ed metabolomics has a broad spectrum of applications, 
mainly in the diet and nutrition sector [13, 15], for exam-
ple to identify nutritional disorders or deficiencies [16] 
and biomarkers of food intake (BFIs) [17], to analyze 
food composition, to estimate dietary intake [18] and to 
provide appropriate recommendations for chronic dis-
ease management [19].

Metabolomic tools and techniques
A large variety of spectroscopic techniques are em-
ployed as conventional characterization platforms in 
metabolomics studies, including Fourier transformed 
infrared (FT-IR) spectroscopy [20], high-performance 
liquid chromatography (HPLC) [15], mass spectrometry 
(MS) [21], and nuclear magnetic resonance (NMR) spec-
troscopy [22]. Ultra-performance LC (UPLC) is an ad-
vancement of conventional HPLC that operates at higher 
pressure, offering 2-3 times enhanced spectral sensitiv-
ity over conventional HPLC, alongside short measure-
ment times and small analyte quantity requirement [23]. 
Mass spectrometry is sensitive in the detection of neg-
ligible analyte concentrations, but it requires laborious 

preliminary separation steps using GC/LC tools. On the 
other hand, NMR is preferred over the other spectro-
scopic techniques due to its non-destructive nature, high 
reproducibility, sample preparation feasibility, and both 
qualitative and quantitative modes of sample identifica-
tion [24]. Nonetheless, weak NMR signal sensitivity in 
case of multicomponent analyte analysis is its main lim-
itation [25], but it can be reduced by using cryogenically 
cooled probes, microprobes, and/or the dynamic nuclear 
polarization approach [26]. Overall, the huge diversity 
of metabolite structures – in terms of concentration, po-
larity, size, and stability – prevents the collective anal-
ysis of all metabolites using only one or two analytical 
techniques. Therefore, sequential coupling of different 
techniques has been proven to be beneficial to improve 
NMR signal. Currently, the main limitation of these cou-
pled techniques is their cost-effectiveness, even though 
they will probably become the most prevalent metabolo-
mics approach in future [27].

Metabolomics and comprehensive food 
characterization
The aim of precision nutrition revolves around the ba-
sic understanding of food composition and its correlated 
health benefits. Conventionally, food composition is an-
alyzed in terms of macronutrient and essential nutrient 
content, but also by exploiting national food company 
databases (such as USDA or Health Canada) [28]. The 
few reported essential nutrients, however, do not cover 
the full spectrum of food composition, which refers to 
the micronutrient profile of a food product. Generally, 
the average fruit or vegetable consists of a cocktail of 
over 15,000 different components, belonging to over 
100 chemical classes in variable concentration, ranging 
from 10-12M (vitamins) to 10-3M (sugars) [28]. These mi-
cronutrients impart basic properties to the food, includ-
ing health benefits, food aroma, flavor, and color, which 
are due to polyphenols, terpenes, and pigments  [29]. 
Metabolomics helps elucidate micronutrients present 
in food, thus enhancing our knowledge of various food 
constituents.
MS-NMR coupled spectroscopic metabolomics studies 
on a wide variety of foods (such as milk, banana, wine, 
beer, rice, tomato) have identified a vast majority of pre-
viously unknown nutrient species [10]. Moreover, these 
studies helped in developing food-nutrients/metabolome 
databases, including Phenol-Explorer, PhytoHub, and 
FooDB (Tab. I) [10, 30]. The statistics of these food me-
tabolome databases is as follows:
•	 Phenol-Explorer: 501 polyphenols from 459 food 

varieties;
•	 PhytoHub: > 1,800 phytochemicals from 356 food 

varieties;
•	 FooDB, > 71,000 chemicals in nearly 800 food va-

rieties [31]. 
All these databases act as a guide for nutrition scientists 
to develop precision nutrition and to understand the nu-
tritional dynamics required to maximize expected health 
benefits.
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Food metabolome
The term ‘food metabolome’ refers to the collection of 
all the metabolites of food that are derived by ingestion, 
digestion, and absorption. The term is broadly coined as 
‘human-food metabolome,’ because humans consume 
a maximal amount of food metabolites [32]. Food con-
sumed by humans contains approximately 25,000 com-
pounds, which get further metabolized after ingestion, 
creating a complicated and extensive array of molecules 
[32, 33]. Nonetheless, the great diversity in human food 
metabolites is the biggest challenge in characterizing 
them completely: it can only be done by accurately mon-
itoring dietary intake and any health effects defined in 
epidemiological and clinical investigations. 

The food metabolome as part of the human metabolome
Human metabolomes are highly complex and vary de-
pending on several factors, such as diet, health status, 
gender, age, genetic makeup, and physiology of an in-
dividual [34]. This is because humans, unlike laborato-
ry animals, are free-living omnivores, and are exposed 
to multiple environments associated with a tremendous 
variety of ingested foods. Hence, the human metabo-
lome comprises four different categories: endogenous 
metabolome (chemicals linked with cellular metabo-
lism), food metabolome (derived from foodstuff), xeno-
biotics linked with drugs, and xenobiotics linked with 
environmental chemicals. The exact composition of the 
human metabolome is hard to ascertain; at least 50,000 
detectable compounds have been identified in the hu-
man metabolome to date [35]. The composition of the 
human metabolome also varies depending on the type 
of biofluid and/or body part to which it is sampled from.  
For instance, the chemical composition of oral or gas-
tric compounds is identical to the chemicals extracted 
from ingested food or drugs, whereas food constituents 
found in urine and blood are entirely different from the 
parent compounds because they get further metabolized 

into secondary metabolites in the liver, kidneys, or intes-
tines. Sometimes the parent compounds get extensively 
metabolized and thus turn into end products, which are 
similar to chemicals naturally produced by the body. In 
addition, the gut microbiota is a massive contributor to 
the composition of the human metabolome [36]. Typi-
cally, vitamins, certain amino acids, and fatty acids are 
specific microbial metabolites; however, there are other 
metabolites derived from biotransformation of both en-
dogenous and food metabolomes by the gut microbiota. 
Gut microbiota-mediated metabolites include secondary 
bile acids, amino acid metabolites, short-chain fatty ac-
ids, and plant polyphenol metabolites [37].

Metabolomics and dietary biomarkers 
One of the important preludes of precision nutrition is 
to have a detailed understanding of an individual’s di-
et and overall dietary status. Traditionally, assessing the 
nutritional status of an individual was done using several 
means, such as nutritional assessments, such as surveys, 
dietary diaries, 24 h dietary recalls, and food frequency 
questionnaires; however, these methods present several 
limitations. These include, but are not limited to, delib-
erate deception in reporting dietary intake, recall bias, 
memory lapses, and difficulties in estimating portion 
sizes. These limitations can lead to incorrect or inconsis-
tent data collection, which leads to ambiguity in identi-
fying dietary biomarkers, thus highlighting the necessity 
to deploy analytical tools that can correctly measure an 
individual’s dietary intake and facilitate correspond-
ing BFI detection. In this regard, a major initiative was 
launched in 2013: the so-called Food Biomarker Alli-
ance, also known as FoodBAll [38]. 

Food Biomarker Alliance (FoodBAll)
The aim of FoodBAll was to use metabolomics in BFI 
identification and to create an inventory of metabolite 
biomarkers in biological fluids produced after intaking 

Tab. I. Metabolite databases and repositories related to the food metabolome.

Database/ Repository  Website Types of metabolites
Number  

of metabolites  
or foods

References

Food Metabolome 
Repository

http://metabolites.in/foods/
Food metabolites 
identified using LC-MS

222 food items 
analysed via LC-MS

[43]

FsDatabase
http://www.kazusa.or.jp/komics/
en/tool-en/218-fstool.html

Flavonoids 6,867 [43]

HMDB www.hmdb.ca

Microbial transformed 
Endogenous, and 
exogenous/ xenobiotic 
compounds identified 
in humans 

Over 40,000  [42] 

Exopome Explorer 2  www.ecmdb.ca
Dietary and pollution 
biomarkers 

908 [40, 44] 

FooDB  www.foodb.ca
Food constituents and 
additives 

28,000  [28] 

Phenol-Explorer www.phenol-explorer.eu Polyphenols in the diet  502  [45] 

PhytoHub  www.phytohub.eu
Phytochemi-cals and 
their metabolites in 
the diet

1,500  [46] 

http://metabolites.in/foods/
http://www.kazusa.or.jp/komics/en/tool-en/218-fstool.html
http://www.kazusa.or.jp/komics/en/tool-en/218-fstool.html
http://www.hmdb.ca
http://www.ecmdb.ca
http://www.foodb.ca
http://www.phenol-explorer.eu
http://www.phytohub.eu
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a specific food [38]. This inventory helps to elucidate 
the metabolites produced in the human body as a re-
sponse to dietary intake as well as overall metabolism. 
Understanding the metabolism of foods with respect to 
its type, quantity, and metabolic rate is a key to preci-
sion nutrition: such detailed information helps nutrition-
al scientists and dieticians to tailor personalised dietary 
regimes both for healthy individuals and for patients to 
improve their overall health and wellbeing. 
The members of the FoodBAll consortium identified sev-
eral BFIs for various classes of foods and developed proto-
cols and definitions for their identification and validation 
[39]. The BFIs have now been listed in dedicated databas-
es, such as Exposome-Explorer [40], MarkerDB [41], and 
Human Metabolome Database (HMDB) [42].

Dietary biomarker discovery using 
dietary patterns
Dietary pattern analysis aids scientists and dieticians in 
gaining a broader insight into an individual’s dietary in-
take, food preferences, and eating habits. Dietary pattern 
analysis encompasses the quantities, proportions, vari-
ety, and combinations of consumed foods/beverages as 
well as consumption frequency. 
Identification of dietary biomarkers involves the combi-
nation of dietary and metabolomic patterns, which are 
analysed by applying chemometrics coupled with multi-
variate strategies to develop models for food intake be-
havior and metabolic patterns [47]. Both supervised and 
unsupervised methods can be used to identify similari-
ties and differences in detected metabolites. The data are 
then subjected to various cluster analyses – such as hier-
archical clustering – to identify similar groups [48]. Su-
pervised learning methods, such as partial least-squares 
discriminant analysis (PLS-DA) and partial least squares 
regression (PLSR), are used to identify food metabolites 
that act as biomarkers to predict diet-related metabolic 
patterns [49, 50]. 
Food metabolites have an influential effect on human 
health. A person’s metabolomic profile reflects the over-
all metabolic state under a particular environmental/
pathophysiological condition and changes with respect 
to changes in said condition. In addition, an individual’s 
metabolomic profile is dependent upon overall genetic 
makeup, phenotypic expression of genes, and dietary in-
take [51]. Here, dietary intake and choice of food play a 
dual role: not only do they affect the type of metabolites 
being produced, but they also influence the gut microbial 
community and the way this microbiota will metabolize 
the diet [51, 52]. It has been widely accepted now that 
gut microbiota plays a pivotal role in maintaining over-
all gut health, and changes in the gut microbiota may 
give rise to metabolic disorders and initiate or aggravate 
non-communicable diseases such as obesity, diabetes, or 
hypertension [53]. 
The gut microbiota is comprised of 1,000 different spe-
cies of approximately 1014 individual microbes, with a 
total biomass of 2 kg [54]. These microbes not only help 
in metabolism and absorption of micronutrients, but they 
modulate the host’s immunity against pathogens as well 

[55]. Lactic acid bacteria and Bifidobacterial species re-
siding in the human gut are essential for human health, 
as they synthesize vitamin K and several B vitamins, like 
thiamine, biotin, folates, cobalamin, pantothenic acid, 
nicotinic acid, pyridoxine, and riboflavin [56]. A cross 
talk exists between human gut microbiota, dietary intake, 
and the way it is metabolized: for instance, dietary intake 
influences the microbial community structure in the gut. 
In turn, the microbial community in the gut affects the 
way food components are metabolised and absorbed. The 
result of this cross talk determines the overall metabolo-
mic state of an individual, which greatly influences their 
health and wellbeing [57]. Moreover, dietary changes af-
fect the functionality of gut microbiota, thus increasing 
human dietary flexibility. In addition to dietary intake, the 
microbiota is affected by an individual’s genetics, envi-
ronment including psychology, bacteriophage action, and 
use of antibiotics or other treatments [58-61].  
Untargeted metabolomics has been used to evaluate the 
physiology and metabolomic profile of gut microbiota 
in response to intake of dietary supplements (Table II). 
A recent study has reported the effect of seven dietary 
supplements on a consortium culture of bacteria con-
taining Blautia producta, Bifidobacterium longum, An-
aerostipes caccae, Clostridium ramosum, Bacteroides 
thetaiotaomicron, Clostridium butyricum, Lactobacillus 
plantarum, and Escherichia coli. GC-MS analysis of the 
dietary supplement’s metabolism by the consortium (in 
comparison to placebo) detected 131 metabolites, which 
included organic acids, fatty acids, nucleic acids, amino 
acids (the predominant class of metabolites), phenolic 
compounds, steroids, sugars, alcohols, and inorganic ni-
trogenous compounds [54]. The study indicated a mod-
ulatory effect of dietary supplements on the microbial 
community and on gut metabolism, inhibiting or induc-
ing specific metabolic pathways.
Moreover, metabolomics can help identifying food-in-
duced shifts in metabolites, thus providing useful informa-
tion about an individual’s diet. For instance, an interven-
tion study classified two dietary patterns, the New Nordic 
Diet (NND) and the Average Danish Diet (ADD), using 
untargeted metabolomics coupled with multivariate anal-
ysis, with a low misclassification error rate (19%) [62]. 
This reveals that untargeted metabolomics can be used as 
a powerful screening tool to estimate compliance to a cer-
tain dietary pattern [62]. A similar study was conducted 
to explore the effects of an isocaloric Mediterranean diet 
(MD) intervention on overall metabolic health, systemic 
metabolome, and gut microbiome in individuals having 
lifestyle risk factors for metabolic diseases. The results 
revealed that switching to the Mediterranean diet whilst 
retaining the overall caloric intake resulted in changes in 
the gut microbiome as well as the metabolites in urine, 
with a marked reduction in blood cholesterol levels and 
an improvement in overall health [63]. 
In another study, 1H NMR was used to analyse the uri-
nary metabolome of 1,848 Americans, which revealed 
46 metabolites that can help differentiate healthy and 
unhealthy individuals. These metabolites indicated the 
correlation of vitamin C, glucose, and fructose with 
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biomarkers of citrus fruit consumption, such as 2-hy-
droxy-2-(4-methylcyclohex-3-en-1-yl) propoxy glucu-
ronide, 4-hydroxyprolinebetaine, and proline betaine. In 
addition, these metabolites highlighted the association 
of calcium and sodium with citrate, and formate with 
hypertension, renal function, and adiposity [64].
These studies indicate the potentials of metabolomic 
approaches in revealing the metabolomic status of an 
individual in response to dietary intake and pathophysi-
ological conditions, in detecting gut microbial changes, 
and in applying precision nutrition. 

Metabolomics and customised diet design
The most impressive use of metabolomics data in nutri-
tion sciences is perhaps the design of tailor-made diets, 
based on an individual’s metabolomic profile, dietary 
preferences, gut microbiome, lifestyle, and pathophysi-
ological status. In addition to that, the integration of the 
other omics technologies provides an excellent platform 
for prevention and management of metabolic disorders 
like diabetes, obesity, hyperlipidemia, and hypercho-
lesterolemia [72]. For instance, one study reported the 
integrated use of metagenomics, metabolomics, and pre-
cision nutrition coupled with machine learning to devise 
a dietary regime to manage postprandial blood glucose 
levels. The algorithm was based on anthropometric da-
ta, physical activity, metabolomic-based blood param-

eters, self-reported dietary intake, and gut microbiome 
composition of 800 participants considered healthy or 
prediabetic [73]. A high interpersonal variability was 
observed in postprandial glycemic responses of partic-
ipants, irrespective of the fact that they were given the 
same food. Based on these findings, DayTwo Inc., the 
first precision nutrition company, was established, with 
the aim to design custom diets for prevention and control 
of prediabetes [74].
Similarly, another study used LC-MS based metabolomic 
profiling on blood samples from 40 healthy adults with 
normal blood sugar levels to predict their risk of acquir-
ing type 2 diabetes, resistance to insulin, and associated 
comorbidities. Based on their metabolomic profiling, 
subjects were given customised diets, nutritional supple-
ments, physical activity, and lifestyle recommendations 
for 100 days. The follow-up metabolomic analysis after 
100 days, showed a significant decline in the risk of devel-
oping type 2 diabetes and associated comorbidities [75]. 
These and similar studies indicate that precision nutrition 
guided by metabolomic profiling is a promising arena for 
further research. Thus far, most of the metabolomic stud-
ies had focused on identifying metabotypes and metabo-
lomic markers associated with obesity, diabetes, and met-
abolic disorders. Further studies in this regard will enable 
scientists and dietitians to design customised diets, based 
on an individual’s metabolomic status for achieving better 
health and controlling lifestyle-mediated diseases.

Tab. II. Targeted and untargeted metabolomic approaches for food metabolites biomarker identification.

Techniques Purposes of the study Study groups Findings References
Targeted Metabolomics

Fluorescence 
spectroscopy

Comparative analysis of 
the effects of dietary 
levels of proline betaine on 
glycine betaine excretion, 
homocysteine, and betaine 
concentrations in plasma

8 healthy males
Age: 18-50

Proline and betaine had 
little effect on plasma total 
homocysteine concentrations in 
healthy humans

[65]

Mass 
spectrometry

Blood metabolites that correlate 
red meat consumption to the 
onset of type 2 diabetes

790 males and 1,257 
females, including 801 
with type 2 diabetes
Age: 35-64

Six biomarkers were linked to 
elevated red meat consumption 
and diabetes risk

[66]

Mass 
spectrometry

Analysis of demographics, 
dietary habits, and metabotypes

740 males and 760 
females
Age: 18-90

Two subgroups identified for 
postprandial insulin levels and 
fasting metabolic profile

[67]

Targeted mass 
spectrometry

Effect of Western  dietary 
patterns on metabotypes

16 females and 21 males
Age: 18-50

Western dietary pattern with 
high saturated fat intakes 
resulted in higher levels of short 
chain acylcarnitine and amino 
acids as dietary biomarkers

[68]

Untargeted metabolomics

NMR
Identification of coffee 
consumption biomarkers

7 females and 1 male
Age: 28-45 

Identification of putative 
biomarker 2-furoylglycine

[69]

Mass 
spectrometry 

Characterization of dietary 
walnut fingerprinting

275 subjects, both male 
and female 
Age: 55-80 (males) and 
60-80 (females)

Identification of 18 markers 
of fatty acid metabolism and 
intermediate metabolites of the 
tryptophan/serotonin pathway

[70]

Mass 
spectrometry

Compliance tool development 
based on metabotyping 
strategies to compare Average 
Danish Diet vs New Nordic Diet 
for 6 months

79 females and 28 males 
Age: 18-65

Identification of 22 unique food 
markers for 7 food groups
(chocolate, cabbage, beetroot, 
citrus, green beans, strawberry, 
and walnut)

[71]
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Conclusions

Metabolomic studies coupled with genomics, proteom-
ics, and multivariate analysis, provide an excellent plat-
form for new advancements in the field of precision nu-
trition. Not only does this approach generate a repertoire 
of novel human food metabolome biomarkers, but it 
will also greatly enhance the development of molecular 
nutritional epidemiology, thus contributing to a better 
prescription of dietary regimes and physical activity for 
managing a healthy lifestyle and preventing and curing 
lifestyle-mediated diseases. In addition, precision nutri-
tion not only brings hope for patients suffering from var-
ious metabolic disorders, but also provides nutritionists 
with a tool for designing diets that match the nutritional 
requirements, metabolic function, and gut microbiota to 
achieve maximum benefits.
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