@**!**\$9

OPEN ACCESS

NOSOCOMIAL INFECTIONS

The management of healthcare-related infections through lean methodology: systematic review and meta-analysis of observational studies

MARINA SARTINI^{1,2}, CARLOTTA PATRONE³, ANNA MARIA SPAGNOLO^{1,2}, ELISA SCHINCA^{1,2}, GIANLUCA OTTRIA^{1,2}, CHIARA DUPONT¹, MATTIA ALESSIO-MAZZOLA⁴, NICOLA LUIGI BRAGAZZI⁵, MARIA LUISA CRISTINA^{1,2,*} ¹Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy; ²S.S.D. U.O. Hospital Hygiene, E.O. Ospedali Galliera, Genoa, Italy; ³Department of Directorate, Office Innovation, Development and Lean Application, E.O. Ospedali Galliera, Genoa, Italy; ⁴Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy; ⁵Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada

Keywords

Hospital efficiency • Healthcare • Lean management • Nosocomial infections

Summary

Introduction. Lean is largely applied to the health sector and on the healthcare-associated infections (HAI). However, a few results on the improvement of the outcome have been reported in literature. The purpose of this study is to analyze if the lean application can reduce the HAI rate.

Methods. A comprehensive search was performed on PubMed/ Medline, Scopus, CINAHL, Cochrane, Embase, and Google Scholar databases using various combinations of the following keywords: "lean" and "infection". Inclusion criteria were: 1) research articles with quantitative data and relevant information on lean methodology and its impact on healthcare infections; 2) prospective studies. The risk of bias and the study quality was independently assessed by two researchers using the "The

Introduction

Lean has been defined "management practice based on the philosophy of continuously improving processes by either increasing customer value or reducing non-value adding activities (muda), process variation (mura), and poor work conditions (muri)" [1]. Ohno identified seven kinds of muda categorized in transportation, inventory, motion, waiting, overproduction, overprocessing and defects [2]. These muda are present also in the healthcare sector [3]. Subsequently, Lean management has been exported to this sector [4, 5]. This application has been described in so many different ways such as strategy, philosophy or way of working [6] and several efficiency results (i.e. time saving or cost reduction) have been achieved over time [7-11]. However, few results on the improvement of the outcome have been published [12]. Although, a protocol for a Cochrane Review on the effect of lean on the patient outcomes has been released [13], the specific impact of Lean application on healthcareassociated infections (HAIs) has not still extensively investigated.

Lean and its variants, such as Six Sigma, can be applied to several aspects of health care including finance,

......

National Institutes of Health (NIH) quality assessment tool for before-after (Pre-Post) study with no control group". The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines has been used. 22 studies were included in the present meta-analysis.

Results. Lean application demonstrated a significant protective role on healthcare-associated infections rate (*RR* 0.50; 95% *C.I.*: 0.38-0.66) with significant impact on central line-associated bloodstream infections (*CLABSIs*) (*RR* 0.47; 95% *C.I.*: 0.28-0.82).

Conclusions. Lean has a positive impact on the decreasing of HAIs and on the improvement of compliance and satisfaction of the staff.

inventory management, information processing, outpatient clinics, and inpatient setting [14-21].

HAIs are recognized worldwide as an important public health problem, and they are of increasing interest to politicians, patients, and the public [22]. Up to 2,609,911 new cases of HAIs occur every year in the European Union and European Economic Area (EU/EEA) [22]. Many research studies report that in Europe hospitalwide prevalence rates of HAIs range from 4.6% to 9.3%. HAIs have impact on critically ill patients with around 0.5 million episodes of HAIs being diagnosed every year in intensive care units (ICUs) alone, including central line-associated bloodstream infections (CLABSIs), catheter-associated urinary tract infections (CAUTIs), and ventilator-associated pneumonia (VAP) [23].

The problem of nosocomial infection is increased by the spread of multi-resistant microorganisms [24-30]. Since the 1970s, the selective pressure exerted by antibiotics has given rise to bacterial species that are increasingly resistant, and the last 20 years have seen a dramatic rise in the number of multi-resistant pathogenic strains [31]; the attributable deaths in the EU due to antimicrobial resistant microorganisms were estimated to be 33,110 per year.

At present, monitoring and preventing HAIs is a priority for the healthcare sector and reducing the incidence of HAIs is used as an indicator of the quality of service provided.

Several causes of HAIs have been identified [32] such as the lack of standardized [33-35] or inadequate sanitation procedures that can contribute to the spread of crossinfections [36]. Some scholars estimate that 20-30% of HAIs are avoidable through an extensive infection prevention and control program [37-38].

Lean and six sigma supported by change management are important tools, renamed Robust Process Improvement (RPI), to address those problems by the Joint Commission Center for Transforming Healthcare [39]. In fact, the Joint Commission reported one example of reduction or Surgical Site Infection through RPI [39]. In 2012 a review of the literature focusing on the quality improvement in the surgical healthcare showed how different tools (lean, six sigma and statistical process control or PDCA) can decrease the infection rate [40]. Several lean applications have been described over the years with the purpose of improving healthcare quality [4], nonetheless, to the best of our knowledge, no systematic reviews and meta-analyses have been specifically focused on the lean application for reduction of HAIs.

The aim of this systematic review and meta-analysis of prospective studies is to provide high-level evidence about the lean application for HAIs reduction. More specifically, the purpose of this study is to analyze if the lean application can reduce the healthcare-associated infections rate.

Methods

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [41] have been used as a guide to ensure that the current standards for meta-analysis methodology were met. A comprehensive search on PubMed/Medline, Scopus, CINAHL, Cochrane, Embase, and Google Scholar databases was performed using various combinations of the following keywords: "lean" and "infection" from inception up to December 2021 using Medical Subject Headings (MeSH) terms as vocabulary.

Inclusion criteria were: 1) research articles with quantitative data and relevant information on lean methodology and its impact on healthcare infections 2) prospective design studies. Exclusion criteria were: 1) articles not strictly related to the research query; 2) items without enough information on the sample size or on the population; 3) research works not matching the PICOS criteria (Tab. I); all those articles were therefore excluded. No time filter or language filter was applied. Two authors were involved during the screening of the literature. One of them was an industrial engineer and a black belt in lean and six sigma while the other one was a biologist with a postgraduate course on Systematic review and meta-analysis according to the Cochrane methodology. A complete consensus was achieved through discussion for the texts included in this study.

Articles were firstly selected based on title and abstract. The full text of relevant research was then acquired and assessed. Each reference of the selected articles was checked in order not to miss any relevant article. The authors independently read all the papers and they implemented a database for the meta-analysis including the surname of the first author, the year and country of publication, the site of infection and the pre- and post-intervention outcome measures. Studies have been classified depending on the used method within the following six categories: "LEAN", "LEAN/ PDSA (Plan, Do, Study, Act)", "LEAN/TPS (Toyota Production System)", "LSS (Lean Six Sigma)", "RPI (Robust Process Improvement)" and "TPS". "LEAN/ TPS" included all the paper where lean and TPS were used as synonymous. Any disagreement was solved by meeting consensus.

The following subgroups of HAIs have been identified among the included studies: central line associated

.....

Tab. I. Search strategy.

Search strategy	Details
Search string	(Lean OR Lean Six Sigma OR Toyota Production System) AND (hospital infection OR infection OR Healthcare Associated Infection)
Databases	PubMed/MEDLINE, Scopus, Cochrane and Google Scholar
Inclusion criteria	P (patients/population): hospital patients I (intervention/exposure): Lean C (comparison/comparators): pre and post lean application O (outcome): Primary outcome: infection rate; Secondary outcome: healthcare workers satisfaction, healthcare workers compliance to procedures, hand hygiene compliance, unexpected death S (Study design): prospective study/quasi-experimental study
Exclusion criteria	Articles with insufficient details. Study design: editorial, commentaries, expert opinions, letters to editor, abstract
Time filter	None (from inception)
Language filter	None (any language)

blood stream infections (CLABSI), surgical site infections (SSI), Methicillin-resistant *Staphylococcus aureus* (MRSA) infections, *Clostridiodes difficilis* (CD) infections, Ventilator-associated pneumonia (VAP), and catheter associated urinary tract infections (CAUTI).

The infection rate before and after lean application was considered as the effect size (ES) of primary outcome measure. The ES of the secondary outcome measures was considered as the percentage of satisfied healthcare workers, the healthcare workers' compliance to procedures, the hand hygiene compliance, and the unexpected deaths.

A meta-regression was conducted to verify the effect of different infection sub-categories on relative risk (RR). As no significant impact was detected, all the infection categories were considered for primary analysis followed by a secondary sub-group (CLABSI) analysis.

The risk of bias and the study quality was independently assessed by two researchers using the "The National Institutes of Health (NIH) quality assessment tool for before-after (Pre-Post) study with no control group" (https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools) [42]. Results were matched and disagreements were solved by meeting consensus. Fourteen studies were classified as "good" [43-47, 49, 50, 52, 54-57, 60, 61], 6 as "fair" [39, 48, 51, 53, 58, 59] and 2 as "poor" [62, 63].

Statistical heterogeneity was evaluated with I2 statistics and Heterogeneity chi-square test. Heterogeneity was supposed to be significant with P values (χ 2) < 0.1. The values of 25, 50 and 75% in the I2 test corresponded to low, moderate and high levels of heterogeneity, respectively. In case of moderate or high heterogeneity among the studies, a random-effects model, using the method of DerSimonian & Laird, with the estimate of heterogeneity being taken from the Mantel-Haenszel model, was used for the meta-analysis. The RR was calculated as effect estimates, with their 95% confidence intervals (CIs). The RR of the meta-analyses were supposed to be significant if the confidence intervals

.....

Idd. II. List and reactives of studies included	Tab.	II. Li	ist and	features	of	studies	included
---	------	--------	---------	----------	----	---------	----------

did not enclose the value "1". If the confidence interval enclosed the value "1", the absence of an association between exposure and disease cannot be excluded. A smaller confidence interval than value of the individual studies indicated less inaccuracy.

The meta-analysis was performed by means of the STATA SE14® (StataCorp LP, College Station, TX, USA) software and the funnel plot was used to assess the risk of bias. If asymmetry was detected by visual assessment, exploratory analyses using trim and/or fill analysis were performed with investigating and adjusting purposes. The probability of publication bias was tested by means of Egger's linear regression and a value of p < 0.05 was considered as indicative of publication bias. Further stratification was performed with respect to study quality to identify sources of variation. Finally, the stability of the pooled estimate regarding each study was assessed in the setting of sensitivity analyses with exclusion of individual studies from the analysis.

Results

Concerning the systematic review, our initial query resulted in 648 hits (specifically, 600 articles from PubMed/MEDLINE and Scopus, and 48 from other sources); after removal of duplicated items, the resulting list comprised 615 non-redundant articles. Forty-six studies were retained in the qualitative synthesis, and 22 were finally considered in our systematic review and meta-analysis (544 articles were discarded as not being directly pertinent to the topic under investigation and 25 as not meeting the inclusion criteria). Six studies reported more data inherent to infections and were all considered for the meta-analysis. Further details are reported in Figure 1.

The full list of studies included, and their main characteristics are shown in Table II.

First author (year)	Country	Method	Outcome	Process	Pre	Post
Spear (2005)	USA	TPS	CLABSI	1 CLABSI infections review of process in a group of hospitals.	4.2/1,000 central line days	1.9/1,000 central line days
Channen (2000)		TDC // acr	HAI	2 CLABSI infections review	21.1/1,000 pt days	3.33/1,000 pt days
Shannon (2006)	USA	TPS/Leat	Mortality	of process in 2 ICUs	central line days 51%	central line days 16%
Shepler (2006)	USA	Lean	Satisfaction	3 foot traffic in OR	65%	71%
Muder (2008)	USA	TPS	MRSA: ICU Surgical Units	4 infection control in ICU and surgical unit of an hospital	5.45/1,000 pt days 1.56/1,000 pt days	1.35/1,000 pt days 0.63/1,000 pt days

THE MANAGEMENT OF HEALTHCARE-RELATED INFECTIONS THROUGH LEAN METHODOLOGY

Burkitt (2009)	USA	TPS/Lean	Compliance	5 reduce MRSA infection on a surgical unit	26%	44%
Carboneau (2010)	USA	LSS	Hand Hygiene	6 increase hand hygiene compliance AND reduce MRSA infections	65%	82%
MacRedmond (2010)	Canada	Lean/PDSA	Mortality Compliance: -identification of potential septic pt -specificity of assessment	7 management protocol for sepsis in an hospital (ED+ICU)	51.4% 75% 91%	27% 92.3% 90%
McCulloch (2010)	UK	TPS/Lean	Hand Hygiene Compliance: -Administration -Correct use of protocol -Team Communication -Vital signs monitoring and recording -Pt without a drug prescription error -Completion of fluid balance	8 Patient safety protocol compliance in an emergency general surgery ward of an hospital	23% 35% 46% 57% 68% 47% 89%	31% 87% 79% 94% 99% 60% 90%
Ellingson (2011)	USA	TPS	MRSA: -Non intensive care surgical unit -Surgical ICU -Remaining acute care units -Hospital wide	9 reduce MRSA in an hospital through prevention of them	2.28/1,000 pt days 3.73/1,000 pt days 2.33/1,000 pt days 2.40/1,000 pt days	1.48/1,000 pt days 2.17/1,000 pt days 1.39/1,000 pt days 1.88/1,000 pt days
Chassin (2013)	USA	LSS/Change Management	CD SSI Mortality	10 reduce HAIs	8.98/10,000 pt days 15.80% 16.44%	7.69/10,000 pt days 10.70% 12.83%
Cima (2013)	USA	LSS	SSI	11 reduce SSI in a tertiary care medical center	9.8%	4%
Dickson (2013)	USA	LSS	SSI	12 reduce SSI in a community hospital	4.07%	1.93%
Martin (2013)	USA	TPS/Lean	CLABSI (travelling off the ICU) CLABSI (rates) Compliance: -Clean medication admin -Clean cart touches -Clean airway procedures	13 reduction of CLABSI for patient travelling of ICU	14.1/1,000 pt days 3.5/1,000 central line days 23.2% 41.8% 14.6%	9.7/1,000 pt days 2.2/1,000 central line days 93.0% 92.3% 91.6%
Chassin (2015)	USA	LSS/Change Management	Hand Hygiene	14 improve hand hygiene in 8 hospitals	48%	81%
O'Reilly (2016)	USA	Lean	Compliance Satisfaction (1/2) Satisfaction (2/2)	15 improve hand hygiene in ICU	8% 34% 49%	70% 47% 70%

.....

.....

ÎNLET AL.	•••••••••••••••••••••••••••••••••••••••

			VAP		7.2/1,000 ventilator davs	5.2/1,000 ventilator davs
					4.2/1,000 days	4.3/1,000 days
Sirvent (2016)	FU	lean	CAUTI	16 improve flow of critical	of catheter	of catheter
		Lean	CLABSI	patients in ICU	central line	central line
			Mostality		days	days
			WOItality		18%	21%
Montella (2017)	EU	LSS	HAI (Surgical Dpt)	17 reduce HAI in surgery departments	0,37%	0,21%
				18 optimize timely		
Horng (2018)	USA	Lean	Mortality	for patients with sepsis	42,6%	50,0%
Improta (2018)	EU	LSS	HAI (Medicine Dpt)	19 reduce HAI in medicine areas	0,36%	0,19%
		20 reduce CLABSI (8		20 reduce CLABSI (8	1.96/1,000	1.02/1,000
Ferrari (2019)	USA	Lean/EBP	CLABSI	procedures in one hospital)	central line days	central line days
					4.2/1,000	1.8/1,000
Russell (2019)	USA	Lean/PDSA	CLADSI	21 reduce CLABSI in ICU	central line	central line
			Compliance		days 25%	67%
					2.47/1,000	1.46/1,000
Wolak (2019)	USA	Lean	CAUTI	22 reduce CAUTI	days of	days of
	Í					cauleter

TPS: Toyota Production System; LSS: Lean Six Sigma; EBP: Evidence Based Practice; PDSA: Plan, Do, Study, Act; HAI: Hospital-acquired infection; CLABSI: central line associated blood stream infections; CAUTI: catheter-associated urinary tract infections; MRSA: methicillin resistant S. aureus; CD: C. difficile infections; SSI: surgical site infections; VAP: ventilator-associated pneumonia.

 Tab. III. RR and 95% CI for all meta-analyses carried out.

Outcome	HAI subgroup	RR [IC95%] N	р
	HAI (no CLABSI)	0.51 [0.36-0.71] 16	<0.001
Healthcare associated infection	CLABSI	0.47 [0.28-0.82] 7	<0.01
	All	0.50 [0.38-0.66] 23	<0.001
Unexpected death	0.71 [0.42-1.18] 5	n.s.	
Healthcare workers satisfaction	1.24 [1.08-1.42] 3	<0.001	
	Hand hygiene compliance	1.42 [1.15-1.76] 3	<0.01
Hand hygiene and all compliance	Compliance (no hand hygiene)	1.98 [1.50-2.63] 14	<0.001
	All	1.86 [1.47-2.34] 17	<0.001

Three studies were performed in European countries, 1 in UK and the others in North America (1 in Canada and 17 in USA).

Among 22 studies finally included for meta-analysis fourteen studies measured the HAI as primary outcome measure and 8 studies the healthcare worker compliance. Five studies included relevant data on unexpected mortality and 2 studies on healthcare workers satisfaction. Meta-analysis on 14 prospective studies measuring the reduction of healthcare-associated infections rate showed that lean approaches have a significant protective role (RR 0.50; 95% C.I.: 0.38-0.66). Moreover, metaanalysis showed that lean application significantly decreased incidence of CLABSI (RR 0.47; 95% C.I.: 0.28-0.82). The results showed a positive effect of lean application on healthcare worker satisfaction and compliance, but no significant decrease of mortality has been reported (Tab. III).

The adjusted rank correction test (Begger test) and the regression asymmetry test (Egger test) were used to evaluate the risk of bias. The studies evaluating the compliance had high risk of biases (p < 0.001).

A stratified meta-analysis for different lean methods has been conducted to assess for the impact of each method on the outcome measure (Tab. IV).

.....

	Healthcare associated infection	Unexpected death	Healthcare workers satisfaction	Compliance (without hand hygiene)	Hand hygiene compliance
Methods					
LEAN	0.80 [0.36-1.74] 4	1.17 [0.66-2.05] 1	1.24 [1.08-1.42]** 3	8.75 [4.45-17.22] 1	-
LEAN/ PDSA	0.50 [0.09-2.72] 1	0.53 [0.36-0.77] 1	-	1.34 [0.92-1.94] 3	-
LEAN/ TPS	0.30 [0.11-0.86]** 4	0.31 [0.19-0.51] 1	-	1.99 [1.43-2.76]*** 10	1.35 [0.85-2.14] 1
LSS	0.46 [0.23-0.93]* 5	1.17 [0.77-1.79] 1	-	_	1.26 [1.06-1.50] 1
RPI	0.75 [0.43-1.34] 2	0.81 [0.41-1.60] 1	-	-	1.69 [1.35-2.11] 1
TPS	0.49 [0.23-1.07] 7	-	-	-	-
Overall	0.55 [0.41-0.74]*** 23	0.71 [0.42-1.17] 5	1.24 [1.08-1.42]** 3	1.98 [1.50-2.63]*** 14	1.42 [1.15-1.77]*** 3

Tab. IV. RR and 95% CI of all outcome measures stratified for each lean method.

* p<0.05; ** p<0.01; *** p<0.001

Impact of different Lean methodology on HAI

First		Weight
author Year	RR (95% CI)	(I-V)
LEAN		
Sirvent 2016	0.71 (0.23, 2.24)	6.63
Wolak 2019	0.50 (0.05, 5.51)	1.51
Sirvent 2018	1.00 (0.25, 3.99)	4.54
Sirvent 2016	1.00 (0.06, 15.97)	1.13
I-V Subtotal (I-squared = 0.0%, p = 0.958)	0.79 (0.38, 1.74)	13.81
D+L Subtotal	0.79 (0.36, 1.74)	
LEAN/PDSA		
Russell 2019	0.50 (0.09, 2.72)	3.02
-V Subtotal (I-squared = .%, p = .)	0.50 (0.09, 2.72)	3.02
D+L Subtotal	0.50 (0.09, 2.72)	
LEAN/TPS	0.44/0.04.0.400	5.07
Shannon 2000	0.00 (0.04, 0.48)	0.97
Shannon 2000	0.09 (0.01, 0.70)	2.08
Martin 2013	0.71 (0.32, 1.60)	13.34
Martin 2013	0.50 (0.09, 2.72)	3.02
I-V Subtotal (I-squared = 50.2%, p = 0.077)	0.39 (0.21, 0.70)	24.41
	0.30 (0.11, 0.80)	
LSS	0.50 (0.00, 0.70)	
Improta 2018	0.50 (0.09, 2.72)	3.02
Dickson 2013	0.50 (0.09, 2.67)	3.10
Montella 2017	0.50 (0.09, 2.72)	3.02
Cima 2013	0.40 (0.13, 1.23)	0.60
	0.50 (0.05, 5.51)	1.01
D+L Subtotal	0.46 (0.23, 0.93)	17.50
RPI I		
Chassin 2013	0.69 (0.34, 1.41)	16.95
Chassin 2013	0.89 (0.34 2.30)	9.58
I-V Subtotal (I-squared = 0.0% p = 0.672)	0.75 (0.43, 1.34)	26.53
D+L Subtotal	0.75 (0.43, 1.34)	20.00
TPS		
Ellingson 2011	0.50 (0.05, 5.51)	1.51
Muder 2008	0.50 (0.05, 5.51)	1.51
Ellingson 2011	0.50 (0.05, 5.51)	1.51
Ellingson 2011	1.00 (0.14, 7.09)	2.27
Muder 2008	0.20 (0.02, 1.71)	1.89
Ellingson 2011	0.50 (0.09, 2.72)	3.02
Spear 2005	0.50 (0.09, 2.72)	3.02
I-V Subtotal (I-squared = 0.0%, p = 0.978)	0.49 (0.23, 1.07)	14.72
D+L Subtotal	0.49 (0.23, 1.07)	
Heterogeneity between groups: p = 0.802		
I-V Overall (I-squared = 0.0%, p = 0.952)	0.55 (0.41, 0.74)	100.00
D+L Overall	0.55 (0.41, 0.74)	
—		

Healthcare associated infections

The meta-analysis showed that application of LEAN/ TPS (RR 0.30; 95% C.I.: 0.11-0.86) and LSS (RR 0.46; 95% C.I.: 0.23-0.93) had significant impact on HAIs. The application of LEAN, LEAN/PDSA, RPI and TPS showed no significant impact on HAIs (Fig. 2).

......

More than 30% of included studies focused on subgroup of CLABSI with overall significant data for all applied methods (RR 0.54; 95% C.I.: 0.31-0.95) (Fig. 3). However, no significant data have been obtained with analysis of each method applied, due to few studies available for each method. Data on other HAIs confirmed that LEAN/TPS and LSS had significant results on other HAIs (Tab. V).

E470

THE MANAGEMENT OF HEALTHCARE-RELATED INFECTIONS THROUGH LEAN METHODOLOGY

Tab.	V. RR ar	nd 95% CI f	or HAI stra	itified for L	EAN metho	ds.

Healthcare Associated Infection					
	Other HAIS	Only CLABSI			
Methods					
LEAN	0.77 [0.34-1.77] 3	1.00 [0.06-15.96] 1			
LEAN/PDSA	-	0.50 [0.09-2.72] 1			
LEAN/TPS	0.14 [0.04-0.47]	0.53 [0.23-1.06] 3			
LSS	0.45 [0.22-0.95]* 4	0.50 [0.04-5.51] 1			
RPI	0.75 [0.43-1.34] 2	-			
TPS	0.49 [0.21-1.17] 6	0.50 [0.09-2.72] 1			
Overall	0.55 [0.39-0.78]** 16	0.54 [0.31-0.95]* 7			
* p < 0 05 · ** p < 0 01					

Unexpected deaths

Only one study demonstrated that the application of LEAN/PDSA had significant influence on unexpected deaths (RR 0.53; 95% C.I.: 0.36-0.77). Another study showed that LEAN/TPS significantly decreased the unexpected deaths (RR 0.31; 95% C.I.: 0.19-0.51).

Healthcare workers satisfaction

All studies evaluated the LEAN application impact on healthcare workers satisfaction with significant results (RR 1.24; 95% C.I.: 1.08-1.42).

p<0.05; ** p<0.01

Compliance

Only one study measured the compliance with application of the LEAN method with a significant influence (RR 8.75; 95% C.I.: 4.45-17.22).

Three studies, reporting a total of ten outcomes, used the lean and the TPS approaches and measured the pre- and post-intervention compliance. The stratified analysis showed that "LEAN/TPS" significantly increased the compliance of healthcare workers (RR 1.99; 95% C.I.:1.43-2.76). Nonetheless, two studies including three outcomes used the LEAN and PDSA. The application of "LEAN/PDSA" method showed no significant influence on compliance of healthcare workers.

Hand hygiene compliance

Only one study measured the hand hygiene compliance with application of the LEAN/TPS, one study measured the hand hygiene compliance with application of the LSS and one with application of RPI.

The overall analysis highlighted a significant correlation between LEAN (all methodologies) and hand hygiene compliance (Tab. IV).

Discussion

The most important finding of this study is the significant protective impact of lean strategies on HAIs, compliance and staff satisfaction.

Healthcare associated infections are the most common adverse events that afflict millions of patients annually around the world [23]. The reduction of HAIs is considered a quality indicator of the healthcare provided [38]. Over the years different strategies and preventions measures have been applied against infections [40].

Several studies described the lean approach as an effective method to prevent infections, however literature is surprisingly lacking quantitative and measurable results on outcome measures. Johnson et al [64] proposed an example of lean method to reduce the readmission for patients with community acquired pneumonia without providing data of outcome. Simons et al [65] proposed the lean method to decrease the SSI rate through the reduction of the door movement. Nonetheless authors measured only the number of door movement without assess the SSI rate in their research.

To the best of our knowledge, this is the first systematic review and meta-analysis of prospective studies focused on lean application and their relative impact on HAIs.

Due to lack of high-quality evidence data Vest et al [66] raised doubts about the efficacy of the application of lean method on several clinical outcomes. Moraros et al [67] in a systematic review of the literature reported conflicting results on reduction of MRSA infection and lean application with significant data in only three out of twenty-two included studies.

In the present meta-analysis, the overall lean application demonstrated a significant impact on HAIs reduction. The subgroup analysis showed that LEAN/TPS and LSS had significant impact on HAIs reduction on nine studies. Moreover, the lean application showed significant impact on CLABSI and all subcategories of HAIs.

.....

There is uncertain evidence of statistical reduction of mortality with the lean application. Mason et al [68] reported only one study with significant reduction of mortality in patients with proximal femoral fractures with lean application. This finding could be explained considering the lack of data of other factors influencing death. In the present meta-analysis, the lean application seems to have a protective role on unexpected deaths although with inconclusive data. Only two studies showed a significant reduction of mortality with "LEAN/ PDSA" and "LEAN/TPS" methods. Certainly, further studies are required to definitively ascertain this aspect.

Limitation

This study presents some limitations: there are several independent factors influencing the healthcareassociated infections rate that were not measured in the included studies. Patients and pathogens features were not detailed, vaguely reported and precluded a detailed analysis of potential confounding factors. Data of infection reduction were calculated measuring the infection rate before and after a period of Lean application in the same hospital ward and assume that the characteristics of patients don't substantially change. Nevertheless, no detailed population analysis before and after the intervention has been reported. Further potential weakness of this research is the limited number of available articles as consequence of novelty of the research area. Finally, there was high heterogeneity of HAIs spectrum among the published studies.

Conclusions

HAIs are a plague for the healthcare sector. Lean approach seems to be an important method to decrease infection rate and to achieve improvement in compliance and staff satisfaction.

Lean allows to implement the risk management of HAIs, identifying the causes that can determine the occurrence, eliminating them. Moreover it facilitate implementation of infection control practices, including the use of active surveillance cultures and contact precautions.

As Murder et al. underlined, strategies designed to engage frontline workers in changing institutional culture and the work environment could be critical to the success of programs preventing healthcare associated infections [45].

E472

THE MANAGEMENT OF HEALTHCARE-RELATED INFECTIONS THROUGH LEAN METHODOLOGY

Acknowledgments

This research received no external funding.

Conflicts of interest

The authors declare no conflict of interest.

AuthorS' contributions

Conceptualization, M.S., C.P., and M.L.C.; methodology, M.S., C.P. and N.L.B.; software, E.S., G.O. and C.D.; formal analysis, M.S. and N.L.B.; investigation, M.S., C.P. and M.L.C.; data curation, A.M.S., E.S. and G.O.; writing-original draft preparation, M.S., C.P. and M.L.C.; writing-review and editing, M.S., C.P., A.M.S., E.S., G.O., C.D., M.A.-M., N.L.B., and M.L.C.; project administration, M.S. and M.L.C.. All authors have read and agreed to the published version of the manuscript.

References

- Radnor ZJ, Holweg M, Waring J. Lean in healthcare: the unfilled promise? Soc Sci Med 2012;74:364-71. https://doi. org/10.1016/j.socscimed.2011.02.011
- [2] Ohno T. Toyota production system: beyond large-scale production. New York: Productivity Press 1988.
- [3] Goff SL, Kleppel R, Lindenauer PK, Rothberg MB. Hospital workers' perceptions of waste: a qualitative study involving photo-elicitation. BMJ Qual Saf 2013;22:826-35. https://doi. org/10.1136/bmjqs-2012-001683
- [4] Mazzocato P, Savage C, Brommels M, Aronsson H, Thor J. Lean thinking in healthcare: a realist review of the literature. Qual Saf Health Care 2010;19:376-82. https://doi.org/10.1136/ qshc.2009.037986
- [5] Terra JDR, Berssaneti FT. Application of lean healthcare in hospital services: a review of the literature (2007 to 2017). Production 2018;28:e20180009. https://doi.org/10.1590/0103-6513.20180009
- [6] Antony J, Sunder MV, Sreedharan R, Chakraborty A, Gunasekaran AA. systematic review of Lean in healthcare: a global prospective. Int J Qual Reliab Management 2018;36:1370-91. https://doi.org/10.1108/IJQRM-12-2018-0346
- [7] Ankrum AL, Neogi S, Morckel MA, Wilhite AW, Li Z, Schaffzin JK. Reduced isolation room turnover time using Lean methodology. Infect Control Hosp Epidemiol 2019;40:1151-6. https://doi.org/10.1017/ice.2019.199
- [8] Joubert B, Bam W. Review and classification of Lean project aims in hospitals. IEEE International Conference on Engineering; Technology and Innovation (ICE/ITMC). 2019 pp. 1-11.
- [9] Farrokhi FR, Gunther M, Williams B, Blackmore CC. Application of lean methodology for improved quality and efficiency in operating room instrument availability. J Healthc Qual 2015;37:277-86. https://doi.org/10.1111/jhq.12053
- [10] Halm MA, Alway A, Bunn S, Dunn N, Hirschkorn M, Ramos B, St Pierre J. Intersecting Evidence-Based Practice With a Lean Improvement Model. J Nurs Care Qual 2018;33:309-15. https:// doi.org/10.1097/NCQ.00000000000313
- [11] Mazzocato P, Holden RJ, Brommels M, Aronsson H, Bäckman U, Elg M, Thor J. How does lean work in emergency care? A case study of a lean-inspired intervention at the Astrid Lindgren

Children's hospital, Stockholm, Sweden. BMC Health Serv Res 2012;12:28. https://doi.org/10.1186/1472-6963-12-28

- [12] van Vliet EJ, Sermeus W, van Gaalen CM, Sol JC, Vissers JM. Efficacy and efficiency of a lean cataract pathway: a comparative study. Qual Saf Health Care 2010;19:e13. https://doi. org/10.1136/qshc.2008.028738
- [13] Lawal AK, Rotter T, Kinsman L, Sari N, Harrison L, Jeffery C, Kutz M, Khan MF, Flynn R. Lean management in health care: definition, concepts, methodology and effects reported (systematic review protocol). Syst Rev 2014;3:103. https://doi. org/10.1186/2046-4053-3-103
- [14] Cima RR, Brown MJ, Hebl JR, Moore R, Rogers JC, Kollengode A, Amstutz GJ, Weisbrod CA, Narr BJ, Deschamps C; Surgical Process Improvement Team, Mayo Clinic, Rochester. Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center. J Am Coll Surg 2011;213:83-92, discussion 93-4. https://doi.org/10.1016/j.jamcollsurg.2011.02.009
- [15] Ponsiglione AM, Ricciardi C, Scala A, Fiorillo A, Sorrentino A, Triassi M, Dell'Aversana Orabona G, Improta G. Application of DMAIC cycle and modeling as tools for health technology assessment in a university hospital. J Healthc Eng 2021;2021:8826048. https://doi.org/10.1155/2021/8826048
- [16] Vaishnavi V, Suresh M. Modelling of readiness factors for the implementation of Lean Six Sigma in healthcare organizations. Int J Lean Six Sigma 2020;11:597-633. https://doi.org/10. 1108/IJLSS-12-2017-0146
- [17] Scala A, Ponsiglione AM, Loperto I, Della Vecchia A, Borrelli A, Russo G, Triassi M, Improta G. Lean Six Sigma Approach for Reducing Length of Hospital Stay for Patients with Femur Fracture in a University Hospital. Int J Environ Res Public Health 2021;18:2843. https://doi.org/10.3390/ijerph18062843
- [18] Rathi R, Vakharia A, Shadab M. Lean six sigma in the healthcare sector: A systematic literature review. Mater Today Proc 2022;50:773-81. https://doi.org/10.1016/j.matpr.2021.05.534
- [19] Ponsiglione AM, Ricciardi C, Improta G, Orabona GD, Sorrentino A, Amato F, Romano M. A Six Sigma DMAIC methodology as a support tool for Health Technology Assessment of two antibiotics. Math Biosci Eng 2021;18:3469-90. https://doi. org/10.3934/mbe.2021174
- [20] Kuiper A, Lee RH, van Ham VJ, Does RJ. A reconsideration of Lean Six Sigma in healthcare after the COVID-19 crisis. Int J Lean Six Sigma 2021;13:101-17. https://doi.org/10.1108/ IJLSS-01-2021-0013
- [21] Hundal GS, Thiyagarajan S, Alduraibi M, Laux CM, Furterer SL, Cudney EA, Antony J. Lean Six Sigma as an organizational resilience mechanism in health care during the era of COVID-19. Int J Lean Six Sigma 2021;12:762-83 https://doi. org/10.1108/IJLSS-11-2020-0204
- [22] Cassini A, Plachouras D, Eckmanns T, Abu Sin M, Blank HP, Ducomble T, Haller S, Harder T, Klingeberg A, Sixtensson M, Velasco E, Weiß B, Kramarz P, Monnet DL, Kretzschmar ME, Suetens C. Burden of six healthcare-associated infections on european population health: estimating incidence-based disability-adjusted life years through a population prevalence-based modelling study. PLoS Med 2016;13:e1002150. https://doi. org/10.1371/journal.pmed.1002150
- [23] Haque M, Sartelli M, McKimm J, Abu Bakar M. Health care-associated infections - an overview. Infect Drug Resist 2018;11:2321-33. https://doi.org/10.2147/IDR.S177247
- [24] Sticchi C, Alberti M, Artioli S, Assensi M, Baldelli I, Battistini A, Boni S, Cassola G, Castagnola E, Cattaneo M, Cenderello N, Cristina ML, De Mite AM, Fabbri P, Federa F, Giacobbe DR, La Masa D, Lorusso C, Marioni K, Masi VM, Mentore B, Montoro S, Orsi A, Raiteri D, Riente R, Samengo I, Viscoli C, Carloni R; Collaborative Group for the Point Prevalence Survey of health-care-associated infections in Liguria. Regional point prevalence study of healthcare-associated infections and antimicrobial use

.....

in acute care hospitals in Liguria, Italy. J Hosp Infect 2018;99:8-16. https://doi.org/10.1016/j.jhin.2017.12.008

- [25] Cristina ML, Alicino C, Sartini M, Faccio V, Spagnolo AM, Bono VD, Cassola G, De Mite AM, Crisalli MP, Ottria G, Schinca E, Pinto GL, Bottaro LC, Viscoli C, Orsi A, Giacobbe DR, Icardi G; Genoan Klebsiella pneumoniae research group. Epidemiology, management, and outcome of carbapenem-resistant Klebsiella pneumoniae bloodstream infections in hospitals within the same endemic metropolitan area. J Infect Public Health 2018;11:171-7. https://doi.org/10.1016/j.jiph.2017.06.003
- [26] Spagnolo AM, Orlando P, Panatto D, Perdelli F, Cristina ML. An overview of carbapenem-resistant Klebsiella pneumoniae: Epidemiology and control measures. Rev Med Microbiol 2014,25:7-14. https://doi.org/10.1097/MRM.0b013e328365c51e
- [27] Cristina ML, Spagnolo AM, Cenderello N, Fabbri P, Sartini M, Ottria G, Orlando P. Multidrug-resistant Acinetobacter baumannii outbreak: an investigation of the possible routes of transmission. Public Health 2013;127:386-91. https://doi.org/10.1016/j. puhe.2013.01.025
- [28] Cristina ML, Spagnolo AM, Ottria G, Sartini M, Orlando P, Perdelli F; Galliera Hospital Group. Spread of multidrug carbapenem-resistant Acinetobacter baumannii in different wards of an Italian hospital. Am J Infect Control 2011;39:790-4. https://doi. org/10.1016/j.ajic.2011.01.016
- [29] Spagnolo AM, Orlando P, Panatto D, Amicizia D, Perdelli F, Cristina ML. Staphylococcus aureus with reduced susceptibility to vancomycin in healthcare settings. J Prev Med Hyg 2014;55:137-44. https://doi.org/10.15167/2421-4248/ jpmh2014.55.4
- [30] Perdelli F, Dallera M, Cristina ML, Sartini M, Ottria G, Spagnolo AM, Orlando P. A new microbiological problem in intensive care units: environmental contamination by MRSA with reduced susceptibility to glycopeptides. Int J Hyg Environ Health 2008;211(1-2):213-8. https://doi.org/10.1016/j. ijheh.2007.04.002
- [31] Pronovost P, Needham D, Berenholtz S, Sinopoli D, Chu H, Cosgrove S, Sexton B, Hyzy R, Welsh R, Roth G, Bander J, Kepros J, Goeschel C. An intervention to decrease catheterrelated bloodstream infections in the ICU. N Engl J Med 2006;355:2725-32. https://doi.org/10.1056/NEJMoa061115. Erratum in: N Engl J Med 2007;356:2660.
- [32] World Health Organization. Health care-associated infections fact sheet. 2013. Available at: http://www.who.int/gpsc/country_work/gpsc_ccisc_fact_sheet_en.pdf (Accessed on: May 12, 2022).
- [33] Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect Control Hosp Epidemiol 2008;29:996-1011. https://doi.org/10.1086/591861. Erratum in: Infect Control Hosp Epidemiol 2009;30:107.
- [34] Pratt RJ, Pellowe CM, Wilson JA, Loveday HP, Harper PJ, Jones SR, McDougall C, Wilcox MH. epic2: National evidence-based guidelines for preventing healthcare-associated infections in NHS hospitals in England. J Hosp Infect 2007;65 (Suppl 1):S1-64. https://doi.org/10.1016/S0195-6701(07)60002-4
- [35] Creedon SA. Infection control: behavioural issues for healthcare workers. Clin Govern Int J 2006,11:316-25. https://doi. org/10.1108/14777270610708850
- [36] Orlando P, Cristina ML, Dallera M, Ottria G, Vitale A, Badolati G. Surface disinfection: evaluation of the efficacy of a nebulization system spraying hydrogen peroxide. J Prev Med Hyg 2008;49:116-9. https://doi.org/10.15167/2421-4248/jpmh2008.49.3

.....

[37] McHugh SM, Hill AD, Humphreys H. Preventing healthcareassociated infection through education: have surgeons been overlooked?. Surgeon 2010;8:96-100. https://doi.org/10.1016/j. surge.2009.11.009

- [38] Haley RW, Culver DH, White JW, Morgan WM, Emori TG, Munn VP, Hooton TM. The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 1985;121:182-205. https://doi. org/10.1093/oxfordjournals.aje.a113990
- [39] Chassin MR, Loeb JM. High-reliability health care: getting there from here. Milbank Q 2013;91:459-90. https://doi. org/10.1111/1468-0009.12023
- [40] Nicolay CR, Purkayastha S, Greenhalgh A, Benn J, Chaturvedi S, Phillips N, Darzi A. Systematic review of the application of quality improvement methodologies from the manufacturing industry to surgical healthcare. Br J Surg 2012;99:324-35. https://doi.org/10.1002/bjs.7803.
- [41] Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https:// doi.org/10.1136/bmj.n71
- [42] Ma LL, Wang YY, Yang ZH, Huang D, Weng H, Zeng XT. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better?. Mil Med Res 2020;7:7. https://doi.org/10.1186/s40779-020-00238-8
- [43] Improta G, Cesarelli M, Montuori P, Santillo LC, Triassi M. Reducing the risk of healthcare-associated infections through Lean Six Sigma: The case of the medicine areas at the Federico II University Hospital in Naples (Italy). J Eval Clin Pract 2018;24:338-46. https://doi.org/10.1111/jep.12844
- [44] Shannon RP, Frndak D, Grunden N, Lloyd JC, Herbert C, Patel B, Cummins D, Shannon AH, O'Neill PH, Spear SJ. Using real-time problem solving to eliminate central line infections. Jt Comm J Qual Patient Saf 2006;32:479-87. https://doi. org/10.1016/s1553-7250(06)32063-6
- [45] Muder RR, Cunningham C, McCray E, Squier C, Perreiah P, Jain R, Sinkowitz-Cochran RL, Jernigan JA. Implementation of an industrial systems-engineering approach to reduce the incidence of methicillin-resistant Staphylococcus aureus infection. Infect Control Hosp Epidemiol 2008;29:702-8. https://doi. org/10.1086/589981
- [46] Burkitt KH, Mor MK, Jain R, Kruszewski MS, McCray EE, Moreland ME, Muder RR, Obrosky DS, Sevick MA, Wilson MA, Fine MJ. Toyota production system quality improvement initiative improves perioperative antibiotic therapy. Am J Manag Care 2009;15:633-42.
- [47] MacRedmond R, Hollohan K, Stenstrom R, Nebre R, Jaswal D, Dodek P. Introduction of a comprehensive management protocol for severe sepsis is associated with sustained improvements in timeliness of care and survival. Qual Saf Health Care 2010;19:e46. https://doi.org/10.1136/qshc.2009.033407
- [48] McCulloch P, Kreckler S, New S, Sheena Y, Handa A, Catchpole K. Effect of a "Lean" intervention to improve safety processes and outcomes on a surgical emergency unit. BMJ 2010;341:c5469. https://doi.org/10.1136/bmj.c5469
- [49] Ellingson K, Muder RR, Jain R, Kleinbaum D, Feng PJ, Cunningham C, Squier C, Lloyd J, Edwards J, Gebski V, Jernigan J. Sustained reduction in the clinical incidence of methicillinresistant Staphylococcus aureus colonization or infection associated with a multifaceted infection control intervention. Infect Control Hosp Epidemiol 2011;32:1-8. https://doi. org/10.1086/657665
- [50] Cima R, Dankbar E, Lovely J, Pendlimari R, Aronhalt K, Nehring S, Hyke R, Tyndale D, Rogers J, Quast L; colorectal

THE MANAGEMENT OF HEALTHCARE-RELATED INFECTIONS THROUGH LEAN METHODOLOGY

surgical site infection reduction team. Colorectal surgery surgical site infection reduction program: a national surgical quality improvement program--driven multidisciplinary single-institution experience. J Am Coll Surg 2013;216:23-33. https://doi.org/10.1016/j.jamcollsurg.2012.09.009

- [51] Martin LD, Rampersad SE, Geiduschek JM, Zerr DM, Weiss GK, Martin LD. Modification of anesthesia practice reduces catheter-associated bloodstream infections: a quality improvement initiative. Paediatr Anaesth 2013;23:588-96. https://doi. org/10.1111/pan.12165
- [52] Chassin MR, Mayer C, Nether K. Improving hand hygiene at eight hospitals in the United States by targeting specific causes of noncompliance. Jt Comm J Qual Patient Saf 2015;41:4-12. https://doi.org/10.1016/s1553-7250(15)41002-5
- [53] O'Reilly K, Ruokis S, Russell K, Teves T, DiLibero J, Yassa D, Berry H, Howell MD. Standard work for room entry: Linking lean, hand hygiene, and patient-centeredness. Healthc (Amst) 2016;4:45-51. https://doi.org/10.1016/j.hjdsi.2015.12.008
- [54] Sirvent JM, Gil M, Alvarez T, Martin S, Vila N, Colomer M, March E, Loma-Osorio P, Metje T. Lean techniques to improve the flow of critically ill patients in a health region with its epicenter in the intensive care unit of a reference hospital. Med Intensiva 2016;40:266-72. https://doi.org/10.1016/j.medin.2015.08.005.
- [55] Montella E, Di Cicco MV, Ferraro A, Centobelli P, Raiola E, Triassi M, Improta G. The application of Lean Six Sigma methodology to reduce the risk of healthcare-associated infections in surgery departments. J Eval Clin Pract 2017;23:530-9. https:// doi.org/10.1111/jep.12662
- [56] Ferrari S, Taylor K. Effect of a systemwide approach to a reduction in central line-associated bloodstream infections. J Nurs Care Qual 2020,35:40-4. https://doi.org/10.1097/ NCQ.000000000000410
- [57] Russell TA, Fritschel E, Do J, Donovan M, Keckeisen M, Agopian VG, Farmer DG, Wang T, Rubin Z, Busuttil RW, Kaldas FM. Minimizing central line-associated bloodstream infections in a high-acuity liver transplant intensive care unit. Am J Infect Control 2019;47:305-12. https://doi.org/10.1016/j. ajic.2018.08.006
- [58] Spear SJ. Fixing health care from the inside, today. Harv Bus Rev 2005 Available at: https://hbr.org/2005/09/fixing-healthcare-from-the-inside-today. (Accessed on: May 16, 2022).

- [59] Carboneau C, Benge E, Jaco MT, Robinson M. A lean Six Sigma team increases hand hygiene compliance and reduces hospitalacquired MRSA infections by 51%. J Healthc Qual 2010;32:61-70. https://doi.org/10.1111/j.1945-1474.2009.00074.x
- [60] Horng M, Brunsman AC, Smoot T, Starosta K, Smith ZR. Using lean methodology to optimize time to antibiotic administration in patients with sepsis. Am J Health Syst Pharm 2018;75(5 Suppl 1):S13-S23. https://doi.org/10.2146/ajhp161017
- [61] Wolak E, Overman A, Willis B, Hedges C, Spivak GF. Maximizing the benefit of quality improvement activities: a spread of innovations model. J Nurs Care Qual 2020;35:199-205. https:// doi.org/10.1097/NCQ.00000000000438
- [62] Shepler M. Process improvements based on lean principles reduce operating room foot traffic, leading to reduced risk of infection and enhanced staff productivity and satisfaction. Available at: https://www.innovations.ahrq.gov/profiles/processimprovements-based-lean-principles-reduce-operating-roomfoot-traffic-leading. (Accessed on: May 9, 2022).
- [63] Dickson AD. Utilizing a Lean Six Sigma Approach to Reduce Total Joint Arthroplasty Surgical Site Infections in a Community Hospital. Am J Infect Control 2013,41:S131-132. https:// doi.org/10.1016/j.ajic.2013.03.260
- [64] Johnson PM, Patterson CJ, O'Connell MP. Lean methodology: an evidence-based practice approach for healthcare improvement. Nurse Pract 2013;38:1-7. https://doi.org/10.1097/01. NPR.0000437576.14143.b9
- [65] Simons FE, Aij KH, Widdershoven GA, Visse M. Patient safety in the operating theatre: how A3 thinking can help reduce door movement. Int J Qual Health Care 2014;26:366-71. https://doi. org/10.1093/intqhc/mzu033
- [66] Vest JR, Gamm LD. A critical review of the research literature on Six Sigma, Lean and StuderGroup's Hardwiring Excellence in the United States: the need to demonstrate and communicate the effectiveness of transformation strategies in healthcare. Implement Sci 2009;4:35. https://doi.org/10.1186/1748-5908-4-35
- [67] Moraros J, Lemstra M, Nwankwo C. Lean interventions in healthcare: do they actually work? A systematic literature review. Int J Qual Health Care 2016;28:150-65. https://doi. org/10.1093/intqhc/mzv123
- [68] Mason SE, Nicolay CR, Darzi A. The use of Lean and Six Sigma methodologies in surgery: a systematic review. Surgeon 2015;13:91-100. https://doi.org/10.1016/j.surge.2014.08.002

.....

Received on July 19, 2022. Accepted on September 13, 2022.

Correspondence: Maria-Luisa Cristina, Dep. Health Sciences, University of Genoa, Via A. Pastore 1 – 16132 Genova. Phone +39 010 3538883 - E-mail cristinaml@unige.it; maria.luisa.cristina@galliera.it

How to cite this article: Sartini M, Patrone C, Spagnolo AM, Schinca E, Ottria G, Dupont C, Alessio-Mazzola M, Bragazzi NL, Cristina ML. The management of healthcare-related infections through lean methodology: systematic review and meta-analysis of observational studies. J Prev Med Hyg 2022;63:E464-E475. https://doi.org/10.15167/2421-4248/jpmh2022.63.3.2661

© Copyright by Pacini Editore Srl, Pisa, Italy

This is an open access article distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license. The article can be used by giving appropriate credit and mentioning the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en