Introduction

Vibrio fischeri, Vibrio splendidus and Photobacterium phosphoreum are among the earliest known non pathogenic species of vibrios. They were described by the Dutch microbiologist Martinus Willem Beijerinck, around 1900. The genus Vibrio includes several taxa, not all detrimental to humans. Overall, more than 70 species are included into the class of Gammaproteobacteria and four different families, namely Enterobacteriaceae, Photobacteriaceae, Salinivibrionaceae and Vibrionaceae. Vibrios are gram negative, usually motile rods, prevalent in the aquatic environment. Noteworthy, some species display ability to establish interesting forms of commensalism and symbiosis with marine animals such as the Hawaiian squid Euprymna scolopes and the aquatic arthropod Gerris spinolae; others are found associated with plants, corals, shrimps, seagrass, sponges, zooplankton, fish and molluscs [1-3].

Cholera is an old known, infectious disease caused by the aquatic bacterium Vibrio cholerae. The disease is characterised by acute diarrhoeic episodes with massive loss of fluids and electrolytes, vomiting and leg cramps. It is generally recognised that infection spreads by ingestion of waters and foods contaminated with faeces containing the bacterium or by accidental swallowing of microorganisms, present onto various environmental matrices. When cholera hit Florence, in 1854, during the Asiatic Cholera Pandemic of 1846-1863, the Italian physician Filippo Pacini, undertook meticulous histological observations that eventually led him to describe a comma-shaped bacillus, which he called “Vibrio”. His discovery was granted prominence only several years later when, in 1965, the international committee on nomenclature adopted the name Vibrio cholerae Pacini 1854 for the etiologic agent of cholera. During the last 185 years, seven, nearly global pandemics have been described. The Vibrio responsible for the seventh pandemic, now in progress, is known as Vibrio cholerae O1, biotype El Tor. The beginning of the current pandemic is reckoned associated with an outbreak in Indonesia, in 1961; the pandemic has then moved to Africa and South America [4]. In 1992, a new serogroup, O139, appeared in southern Asia where it has then become endemic. According to some Authors, this novel serogroup threatens to start the next pandemic [5]. Other than cholerae, reckoned human pathogenic vibrios are: V. parahaemolyticus, V. vulnificus and, secondarily, Grimontia hollisae, Photobacterium damselae, V. alginolyticus, V. cincinnatiensis, V. fluvialis, V. furnissii, V. harveyii, V. metchnikovii, V. mimicus. Most of these species were found to contaminate commonly eaten seafood, like shrimp, squid, crab, cockles and mussels [6].

16S rRNA, flanking sequences of the cytotoxin-hemolysin virulence gene vvhA, pR72H DNA fragment and 16S-23S rRNA intergenic spacer region have been proven effective for the classification of vibrios [7-9]. Biomolecular, genomic analyses, of either clinical or environmental isolates, are performed, at present, by amplified fragment length polymorphism (AFLP), fluorescence in situ hybridisation (FISH), amplified ribo-
somial DNA restriction analysis (ARDRA), random amplified polymorphic DNA (RAPD), repetitive extragenic palindromes (REP), restriction fragment length polymorphism (RFLP), multilocus enzyme electrophoresis (MLEE) and multilocus sequence typing (MLST) and analysis [3, 10-17]. Of specific importance are techniques like FISH and amplification-based methods, allowing typing of nonculturable microbial strains. The viable but nonculturable (VBNC) state of many bacterial species of Vibrio, may cause restrictions in biotyping, especially whenever cultivation-dependent techniques are required [18, 19]. Ethidium bromide monoazide was recently utilized to selectively allow amplification of a target sequence, in viable cells of Vibrio vulnificus [20]. Detection and typing of vibrios by DNA microarrays may also represent an advanced effective strategy [21]. Development of new detection methods is relevant for species like Vibrio vulnificus, whose prevalence in waters and shellfish shows no correlation with conventional faecal indicator organisms [22, 23]. MLEE and MLST base on analogous principles, with diverse discriminatory capabilities. MLEE involves the investigation of polymorphic housekeeping enzymes, whereas MLST relies on several fragments from housekeeping genes [24, 25]. Real time PCR combines sensitivity, accuracy and rapidity, and represents an emergent technique [20, 26]. For phylogenetic studies of vibrios, ribosomal sequences, like 5s rRNA, 16s rRNA, 23s rRNA, recA, rpoA, and pyrH have been used. The 16s rRNA is considered one of the most effective tools for genotyping and classifying vibrios, within the family Vibrionaceae [3, 17, 27, 28].

GenEnv is a database of selected sequences, accessible via the World Wide Web [29, 30]. It is provided by the University Institute of Movement Sciences (IUSM), Rome, Italy, via dedicated links available on the website (www.bioigene.it). The database is constantly edited and updated, and represents part of a system, conceived to provide a user-friendly bioinformatic tool, for supporting detection and typing of bacteria. Its main application fields are public health and environmental microbiology. However, GenEnv is a flexible system with interesting applications also for basic and applied research. The system includes the database of selected genes queryable through a graphical interface. The interface also supports the use of user friendly tools for primer design, homology analysis and restriction maps handling and retrieval. Contemplated sequences are 16S rRNA, rpoB and gyrB, imported from Genbank and other databases, after a meticulous sorting, aimed at minimizing of redundancy.

Results and Discussion

Under the query “Vibrio” GenEnv provided 256 organisms and a total number of 19 families (Tab. I). The total number of available sequences, retrievable from GenEnv, under the query “Vibrio”, was 548 and included: 16s rRNA (n = 402), rpoB (n = 1), gyrB (n = 145). The GenEnv output contained 5 uncultured species of vibrios, with at least one 16s rRNA CDS sequence available, in particular: uncultured Cellvibrio sp. belonging to the family of the Pseudomonadaceae, un- cultured Desulfovibrio sp. belonging to the family of Desulfovibrionaceae, uncultured Desulfovibrio sp. belonging to the family of Desulfovibrionaceae, uncultured Photobacterium sp. belonging to the family of Vibrionaceae, uncultured Vibrio sp. belonging to the family of Vibrionaceae. Retrieved data, under the query “vibrio”, were compared to the previous contents of the database. In one year (from November 04 to November 05), the total number of retrievable organisms, grew from 192 to 256 (+ 33%), including the new uncultured organism, Photobacterium sp. and the family Actinomycetaceae, showing the increasing interest in this microbial taxon.

Micromonospora belonging to uncultured species arouse particular interest, in ecological studies. It is widely recognized that as-yet-uncultured micromonospora represent the vast majority of organisms in most environments. This evidence mainly derives from the analyses of 16s rRNA gene sequences, amplified directly from environmental matrices, by culture-independent methods. These strategies are acquiring increasing relevance, so that a new term was coined “metagenomics”, indicating environmental and community genomics analysis by direct extraction and cloning of DNA from heterogeneous collections of environmental samples [31, 32]. The family Vibrionaceae includes a heterogeneous group of micromonospora, with different ecological properties, that can be successfully.

Methods

The online instructions were followed to obtain the information on vibrios available on the GenEnv database (Fig. 1). The browser window was accessed from GenEnv home page, following the apposite link. Through the specific form, the query “Vibrio” was submitted to GenEnv, by clicking on the “search” button. At this point GenEnv provided the complete list of organisms, present in the database. The total number of records was obtained from the bottom of the result window. A searchable table listed the name and taxonomy associated to each organism. Additional information, such as locus name, chromosome type, total number of bases, accession name and locus associated genes, was obtained by clicking on each individual organism. Bacterial loci were randomly verified by following the related links. Primer pairs for PCR amplification, as well as restriction enzymes for sequence analysis, were obtained from the “histogram” window. Once retrieved, the output for the query “Vibrio” was compared to all the database content through the “statistics” link, which provided information on the total number (n = 27,800) of available CDS, loci and organisms. Subsequently, the output was parsed by Perl scripts, to find the families and CDSs acquired through dynamic queries.
investigated by the use of bioinformatics tools such as the GenEnv system. Bioinformatics offers advanced tools to archive, manage and retrieve an overwhelming wealth of steadily growing information. Its wide applicability covers several scientific fields, including also environmental microbiology. In particular, bioinformatics relies on the availability of exploitable genetic data. As a result, filtered databases, with reduced or minor redundancy, can effectively improve the efficiency in detecting and typing environmental species. In this context, the GenEnv system was conceived and developed to represent an easy and effective online instrument, to study bacteria, starting from a panel of three selected genes: 16S rRNA, rpoB or gyrB.

A major advantage of the GenEnv consists in its applicability to any bacterial isolate, either clinical or collected from the environment, and either not previously described or uncultured. GenEnv approach is not strictly constrained to a fixed set of mutations belonging to a specific microorganism, as are multilocus-based strategies [25]. MLST database is very specific, but available only for already characterised species such as *Vibrio cholerae* or *Vibrio vulnificus*. It provides effective typing especially when submitting seven or more sequences in the database.

![GenEnv Home Page](image-url)
more loci, amplified and fully sequenced. The MLST approach cannot be adopted when dealing with species whose MLST database has not been yet realised, such as Desulfovibrio desulfuricans, Enterovibrio norwegicus, Vibrio aestuarianus, Vibrio splendidus or uncultural vibrio spp. GenEnv is less focused on each single species, but can potentially provide immediate information on any bacterial isolate. In addition, several user-friendly tools allow identification of PCR primers, restriction maps, graphical diagrams of conserved regions. During the last decade, several microorganisms have been studied and sequenced and a total of 281 complete genomes are presently retrievable from the Entrez database, including several vibrios such as Vibrio parahaemolyticus, Vibrio fischeri, Vibrio vulnificus and Vibrio cholerae. Availability of full genomic sequences and advances in bioinformatics will provide enticing and promising perspectives for basic research, epidemiology and biological risk management.

References


